
164 TUGboat, Volume 44 (2023), No. 2

What every (LA)TEX newbie should know

Barbara Beeton

Abstract

LATEX has a reputation for producing excellent re-
sults, but at the cost of a steep learning curve. That’s
true, but by understanding a few basic principles,
and learning how to avoid some techniques that may
seem obvious but often lead one into the weeds, it’s
possible to avoid some of that pain. Our goal here
is to encourage good habits before bad habits have
had a chance to develop.

Introduction

The examples presented here are drawn from two
main sources.

• In the author’s years as part of the TEXnical
support team for a major math publisher, re-
sponsibilities included fielding questions from
authors and writing user documentation.

• The online TEX forum at StackExchange1 has
provided a surfeit of questions both basic and
advanced. A community effort has collected a
list of “Often referenced questions”, by topic, at
tex.meta.stackexchange.com/q/2419.

Exhortation: Read the documentation. (This will
be repeated.)

Vocabulary

There are several concepts that seem to be either
missing from a new user’s bag of tricks, or not clearly
understood. Let’s get them out of the way up front.

Template Many new (LA)TEX users think that the
document class is the template for a particular style
or publication. Not so, although the thought is going
in the right direction. A template is a source (.tex)
file that is an outline. It begins with \documentclass
and contains a minimum of basic structural com-
mands into which additional definitions and text can
be inserted as appropriate. Ideally, the template
itself can be compiled with no errors resulting, but
without producing any useful output.

Command line Most new users these days enter
(LA)TEX from an editor or other GUI, and launch a
non-interactive job that will blithely keep on process-
ing the file until it finishes (with or without errors)
or hangs in a loop. Launching the compilation from
the command line, on the other hand, allows one to
interact with the session and, in certain cases, make
corrections “on the fly”, or if that’s not possible, halt

1 tex.stackexchange.com

the job in case of an error before the collection of
reported errors becomes unhelpful. One type of “fix-
able” error is a misspelled command:
! Undefined control sequence.
l.37 \scetion

{Section}
?
Respond to this with the correct spelling;
i\section
hit “return”, and continue; don’t forget to correct the
file when you come to a good stopping point.

A misspelled environment name can’t be cor-
rected this way; if that happens, cancel the job with
an x, fix the file, and start over. Continuing a run
after an unfixable error will just result in more er-
ror messages, most of which are meaningless and
confusing, so it’s best to avoid them.

Log file Every time a TEX job runs, it will create
a log file. Learn where to find this file! In addition
to errors and warnings, it will report all files that
were read in, including version numbers for document
class files and packages, pages processed, and, at the
end, resources used. Only a few relevant items will
be mentioned here, but in a paper based on an earlier
talk [1], instructions are given for how to undertake
serious debugging.

Conventions

In order to avoid overfull lines, error and warning
messages shown here may be broken to fit the narrow
columns of the TUGboat style. Many error messages
output by LATEX will consist of several lines, the first
being the message, and the next showing the number
of the line on which the error is identified along with
the content of that line, up through the error text. A
following line, indented so that it, with the numbered
line, completes the line as it appears in the input.

Although we will deal here mostly with details,
please remember that the basic concept of LATEX is
to separate content from structure.

Basic structure:
Commands, modes, and scope

Here we deal with some fundamentals of LATEX.

Commands Instructions are given to (LA)TEX by
means of commands, or “control sequences”, which by
default begin with a backslash (\). There are two va-
rieties: those which consist of the backslash followed
by one non-letter character (“control symbol”), and
those of one or more letters (“control words”) in which
only letters (upper- or lowercase A–Z) are permitted
(no digits or special characters). A control word may

doi.org/10.47397/tb/44-2/tb137beeton-basic

Barbara Beeton

https://tex.meta.stackexchange.com/q/2419
https://tex.stackexchange.com
https://doi.org/10.47397/tb/44-2/tb137beeton-basic

TUGboat, Volume 44 (2023), No. 2 165

have one or more arguments (\title{...}) or stand
by itself (\alpha). A “standalone” control word will
be terminated by a space or any other non-letter.
But a space after a control symbol will appear as
a space in the output. Several control symbols are
predefined to produce their own character in the
output: \#, \%, \$, \&. For example, \$ produces
‘$’.

A user can define new commands, or assign
new meanings to existing commands. LATEX pro-
vides \newcommand to create a brand-new definition.
\newcommand checks to make sure that the command
name hasn’t been used before, and complains if it has.
(The basic TEX \def does not.) If it’s necessary to
redefine a command that already exists, the recom-
mended way is to use \renewcommand— but be sure
you know what you’re doing. For example, redefining
\par is chancy, as LATEX uses this “under the covers”
for many different formatting adjustments, and it’s
very easy to mess things up.

Single-letter commands are also bad candidates
for (re)definition by users, as many of them are pre-
defined as accents or forms of letters not usual in En-
glish text; \i might very well occur with (or without)
an accent in a references list. For (a bad) example,
consider the author Haïm Brezis:
\renewcommand{\i}{\ensuremath{\sqrt{-1}}}
Brezis, Ha\"{\i}m =⇒ Brezis, Haïm

Single-digit commands (\0, \1, etc.) are not
predefined in core LATEX, so are available for ad hoc
use.

Environments An environment is a block of mate-
rial between
\begin{⟨env-name⟩} ... \end{⟨env-name⟩}.

The environment name must match at beginning and
end; if it doesn’t, this error is reported in the log file
and on the terminal:
! LaTeX Error: \begin{xxx} on input line nn

ended by \end{yyy}

Most environments can be nested, but the proper
sequence must be maintained.

Other commands are available to provide
new definitions— \NewDocumentCommand,
\NewEnvironment, \NewDocumentEnvironment and
similar ones for redefinitions. For details on these,
consult a current reference.

Modes Generally speaking, the current mode identi-
fies where you are on the (output) page, but here we
will take a point of view based on the input/source
file.

There are three modes: vertical, horizontal and
math.

Starting after \documentclass or after a blank
line or an explicit \par, LATEX is in vertical mode.
Certain operations are best launched in vertical
mode; more about this later.

Starting to input ordinary text is one way to
enter horizontal mode. Other transitions from ver-
tical to horizontal mode are \indent, \noindent
and \leavevmode. Within horizontal mode, multi-
ple consecutive spaces are treated as a single space;
consecutive is essential here. An end-of-line (EOL)
is treated as a space, even though it’s not explicitly
visible in the source file; a GUI that wraps lines may
or may not (usually not) insert an EOL, and differ-
ent operating systems define an EOL differently, but
such differences are taken care of by the TEX engine.
Spaces at the beginning of a line are ignored. More
about spaces later on.

The third mode, math, can be embedded in-line
in text or set as display material in vertical mode.
Inline math is wrapped in $ signs or surrounded
by \(...\). An unnumbered one-line display can
be indicated by \[...\]. Multi-line math displays
are best entered using the environments provided by
the amsmath and mathtools packages. (Refer to the
user documentation. mathtools loads amsmath, so
it’s not necessary to load both.) A math display is
usually a continuation of the preceding paragraph,
so don’t leave a blank line between a display and the
preceding text; to do so can result in an unwanted
page break.

Within math mode, blank lines are not allowed;
this was a decision made by Knuth, to catch unin-
tentional input lapses, since math never continues
across a paragraph break.

Scope Along with modes, there is the concept of
scope, making it possible to localize definitions and
operations.

Math mode is one instance of scope; certain
characters and operations are valid only within math,
and others are invalid there. Within text, math
usually begins and ends with $, and these must
be matched. Display math breaks the flow of text;
closing a display returns to text mode unless followed
by a blank line or \par. More about math later.

Another way of delimiting scope is to wrap the
material in braces: {...}. Within this scope, the
meaning of a command may be changed for tempo-
rary effect; the definition in effect before the opening
brace will be restored as soon as the closing brace
is digested. Instead of a brace pair, the commands
\begingroup. . . \endgroup have the same effect.

Another way to have a scoped environment is
to pack the material in a “box”. This may be a

What every (LA)TEX newbie should know

166 TUGboat, Volume 44 (2023), No. 2

minipage, \mbox or \parbox. Other boxes are de-
fined in packages like tcolorbox.

Some environments (not all) are defined to be a
scope. One such is the theorem environment, inside
which text is italic; when the theorem ends, the text
style automatically reverts to the document default.

Spacing in text

A goal of high-quality typesetting is even spacing in
text. This is really possible only with ragged-right
setting, where spaces are “natural width”. But even
margins are usually preferred, so TEX is designed to
optimize spacing in that context.

In U.S. documents, spaces that end sentences
are wider than interword spaces. This is not true for
documents in other languages, and can be turned off
with \frenchspacing. But in academic documents,
frequent abbreviations can make it difficult to tell
where sentences end. To avoid a too-wide space after
an abbreviation, follow it by “\␣” (backslash-space):
abc vs. xyz (abc vs. xyz) vs.
abc vs.\ xyz (abc vs. xyz)

If the line shouldn’t break after the abbreviation,
follow the period by ~: seen on p.~23. (seen on
p. 23.)

A similar, but reverse, situation can occur when
an uppercase letter is followed by a period. This is
assumed to be the initial of a name; it usually is, and
an ordinary interword space is set. But sometimes
the uppercase letter is at the end of an acronym,
and that ends a sentence. In such a case, add \@
before the period, and it will restore the wider end-
of-sentence space.

All this boils down to a simple rule: Except
at the end of a sentence (and to a lesser extent
after other punctuation symbols or within math),
all spaces within the same line should be the same
width. If they’re not, something is fishy.

Spurious spaces Multiple spaces can infiltrate a
source file in several ways, but the overwhelming
majority are the result of trying too hard to define
commands in such a way that they are visually pleas-
ing (and easily readable). For example:

\newcommand{\abc}{
\emph{abc def}

}
With this, the input “word \abc\ word” results in
“word abc def word” with extra spaces inserted by
our \abc command. The offending spaces can be
evicted by inserting % where it will “hide” an EOL:

\newcommand{\abc}{%
\emph{abc def}%

}

to produce the desirable “word abc def word”. The
% character starts a comment, i.e., ignores the rest
of the input line, including the EOL.

Another source of extra spaces in the output
can be caused by the presence of multiple consecu-
tive elements that aren’t part of the main text, like
footnotes or index entries:

An important topic\index{abc}
\index{def}
\index{xyz}
is indexed several ways.

An important topic is indexed several ways.

Here, the EOL effect has again occurred (after “topic”),
and these spaces are no longer contiguous. Again
the % comes to the rescue:

An important topic\index{abc}%
\index{def}%
\index{xyz}
is indexed several ways.

An important topic is indexed several ways.

Do remember to leave one space.

Sometimes using a % is a bad idea Remember
that a space terminates a control word and it’s then
discarded; that’s one place where it’s not necessary
to input a %. But there are places where adding a %
can really cause trouble.

After defining any numeric value, TEX will keep
looking for anything else that can be interpreted as
numeric, so if a line ends with \xyz=123, no % should
be added. Or, if setting a rubber length (glue), say
\parskip=2pc, TEX will keep looking for plus or
minus; a better “stopper” is an empty token, {}. (If
“plus” or “minus” is there and happens to be actual
text, a confusing error message will be produced, but
that is rare, and beyond the scope of this discussion.)

Really unexpected extra spaces Other possibili-
ties exist that aren’t so predictable. Here’s one that
was the subject of an online question. A text with
\usepackage{colorbox} (it can also happen with
tcolorbox) had a colorized letter surrounded by spaces
in the middle of a word. Oo p s! A small frame was
applied around the colored element by the package:

\usepackage{colorbox}
\newcommand{\pink}[1]{%

\colorbox{red!20}{#1}}
Oo\pink{p}s!

Oo p s!

Explicitly omitting the buffer inside the frame was
the solution provided by the package documentation:

Barbara Beeton

TUGboat, Volume 44 (2023), No. 2 167

\renewcommand{\pink}[1]{{%
\fboxsep=0pt
\colorbox{red!20}{#1\strut}}}

Oo\pink{p}s!

Oops!

I added the \strut so that the color would be obvi-
ous above and below the highlighted element, rather
than covering only the “p”. While this isn’t really
a newbie problem, it’s wise to be aware that such
possibilities exist, and be ready in such cases to seek
expert assistance.

Paragraph endings and vertical mode

The end of a paragraph is a transition from horizontal
to vertical mode. A blank line or \par will accom-
plish this transition. It’s important to be aware of
what mode you’re in, since some operations are best
performed in vertical mode; the most important is
the insertion of floats (figures, tables, algorithms).

Another important consideration is that some
features of text are not “frozen” until a paragraph is
ended. One important feature is the vertical spacing
of baselines, which depends on the font size. Too
many newbies try to end a paragraph with a double
backslash, resulting in horrors like the following.

\Huge Texts with inconsistent descenders
can result in surprises when the font
size changes without a proper paragraph
ending.\\

Texts with inconsistent
descenders can result in
surprises when the font
size changes without a
proper paragraph end-
ing.
Some environments (but not all) are defined with a
paragraph break at the end. A problem such as the
one shown here won’t result in an error or warning
message, so adding a proper paragraph break is the
proper correction.

The vertical space between paragraphs is deter-
mined by the value of \parskip; this is set in the doc-
ument class, but can be reset as needed. But often,
it’s convenient to add occasional extra space between
paragraphs explicitly; this is done with \vspace or
\vskip while in vertical mode (that is, after the
blank line or \par that ends a paragraph).

The double backslash What a paragraph does
not end with is the control symbol \\. \\ does
end a line. It is the designated command to end
lines in tables, poetry, multi-line math environments,
and some other situations. But it does not end
a paragraph and can trigger a number of error or
warning messages.

If \\ is alone on a line in vertical mode, this
error is reported:
! LaTeX Error:

There’s no line here to end.

Further, if the \\ is preceded by a (typed) space,
in addition to the warning, there may be an extra,
unwanted, blank line in the output.

If a line ending with \\ is very short:
Underfull \hbox (badness 10000)

in paragraph at lines ...

This may be okay, but check.
If \\ is followed by bracketed text, as in [stuff

to be typeset], the result will be the mysterious
! Missing number, treated as zero.
For \\, a following (optional) [...] is defined to
indicate a vertical distance to be skipped; insert
\relax before the opening bracket.

If extra vertical space is wanted after a line bro-
ken with \\, it can be added by inserting an optional
rubber length (usually just a dimension), wrapped
in brackets: \\[⟨value⟩]. If such a bracketed ex-
pression is really meant to be typeset, it must be
preceded by \relax.

\newline is often a reasonable alternative to
break a line.

Font changes

Font changes are a time-honored method of commu-
nicating shades of meaning or pointing out distinct
or particularly important concepts. Many such in-
stances are built into document classes and packages;
for example, theorems are set in an italic font, sec-
tion headings in bold, and some journals set figure
captions in sans serif to distinguish them from the
main text.

LATEX provides two distinct methods for mak-
ing font changes. Commands of one class take an
argument and limit the persistence of the change to
the content of that argument; these have the form
of \textbf{...} for bold, \textit{...} for italic,
etc. The other class sets the font style so that it will
not change until another explicit change is made, or
it is limited by the scope of an environment; some ex-
amples are {\itshape...}, {\bfseries...}, and
{\sffamily...}. These commands are best looked
up in a good user guide.

What every (LA)TEX newbie should know

168 TUGboat, Volume 44 (2023), No. 2

Several font-changing commands do different
things depending on the context. \emph{...} will
switch to italic if the current text is upright, or to
upright if the current text is italic. Within math,
\text{...} will set a text string in the same style
as the surrounding text; thus, within a theorem,
\text{...} will be set in italic. If this string should
always be upright, like function words, \textup{...}
should be used instead.

Basic TEX defined two-letter names for most font
styles. All of these are of the persistent type. They
should be avoided with LATEX, as some of the LATEX
forms provide improvements, such as a smoother
transition between italic and upright type.

Math

Math is always a scoped environment. If started, it
must be ended explicitly and unambiguously. Within
text, math begins and ends with $. LATEX also pro-
vides \(...\) for in-text math, but most users stick
with the $. Many different display environments are
defined by the packages amsmath and mathtools, and
it is worthwhile to learn them by reading the user
guides.

Within math, all input spaces are meaningless
to (LA)TEX; they can be entered in the source file as
useful to make it readable to a human. Blank lines,
however, are considered errors. In both in-text math
and displays, the error message will be

! Missing $ inserted.

This will also result if in-text math is not ended
before the paragraph ends, or if a math-only symbol
or command is found outside of math mode.

If a blank line occurs in a multi-line display
environment from amsmath, the first error message
will be
! Paragraph ended before ⟨env-name⟩

was complete.
<to be read again>

This will be followed by many more error messages,
all caused by the first. These will be confusing and
misleading. Always fix the problem identified by the
first error and ignore the rest; they will disappear
once the first error is fixed; here, by removing the
blank line.

If the appearance of a blank line is wanted for
readability, instead use a line with just a %.

As with all environments, the \end name must
exactly match the name specified at \begin. A
“shorthand” for a single-line, unnumbered display is
\[...\]. The environments designed for multi-line
displays should not be used for a single-line display.

Although LATEX provided eqnarray as a display
environment, don’t use it. If the display is num-
bered and the equation is long, the equation can be
overprinted by the equation number.

Tables, figures, and other floats

The allowed number of floats, their positions on a
page, and the spacing around and between them
is defined by the document class. So if something
doesn’t work as you expect (hope for?), any potential
helper will insist on learning what document class is
being used.

Input for a float must appear in the source file
while there is still enough space on the output page
to fit it in. In particular, on two-column pages, a
figure* or table* must occur in the source before
anything else is set on the page. LATEX’s core float
handling does not allow full-width floats to be placed
anywhere but at the top of a page; some packages
extend this capability, but those won’t be discussed
here.

Here are the defaults for the basic article class.
• Total number of floats allowed on a page with

text: 3.
• Number of floats allowed at top of page: 2. Per-

centage of page allowed for top-of-page floats:
70%.

• Number of floats allowed at bottom of page: 1.
Percentage of page allowed for bottom-of-page
floats: 30%.

• Minimum height of page required for text: 20%.
• Minimum height of float requiring a page by

itself: 50%.
The reference height is \textheight. That is, the
height of page headers and footers is excluded.

If an insertion is small, must be placed pre-
cisely and fits in that location, don’t use a float.
\includegraphics or one of several available table
structures should be used directly, often wrapped
in \begin{center} ... \end{center} (Within a
float, use \centering instead.)

The wrapfig package supports cut-in inserts at
the sides of a page or column. Refer to the documen-
tation for details.

By tradition, captions are applied at the top
of tables and the bottom of figures. If an insertion
is not a float, the usual \caption can’t be used.
Instead, \usepackage{caption} and the command
\captionof.

The document class and preamble

When embarking on a new document, start by choos-
ing the document class. If the goal is publication in a

Barbara Beeton

TUGboat, Volume 44 (2023), No. 2 169

particular journal, check the publisher’s instructions
to see what is required. Many popular journal classes
are available from CTAN.2

If the project is a thesis or dissertation, find
out the special requirements, and if your institution
provides a tailored class, obtain a copy. Try to
determine whether it is actively maintained, and
if there is local support. Read the documentation.

It is the responsibility of the document class to
define the essential structure of the intended docu-
ment. If the document you are preparing differs in
essential ways from what is supported by the docu-
ment class, the time to get help is now.

There will be features not natively supported by
the document class; for example, the choice of how
to prepare a bibliography may be left to the author.
This is why packages have been created.

Organizing your document Most packages are
loaded in the preamble. There is one exception:
\RequirePackage. This is usually specified before
\documentclass, and is the place where certain spe-
cial options should be loaded.

Some authors create a preamble that is suitable
for one document, then use the same preamble for
their next document, adding more packages as they
go. And some unwitting newbies “adopt” such second-
hand “templates” without understanding how they
were created. Don’t do it!

Start with a suitable document class and add
features (packages, options, and definitions) as they
become necessary. Organize the loading of packages
into logical groups (all fonts together, for example),
and be careful not to load a package more than once;
if options are needed, any loaded with a non-first
\usepackage will be ignored. Some packages auto-
matically load other packages; for example, mathtools
loads amsmath and amssymb loads amsfonts. And,
very important, pay attention to the order of package
loading: hyperref must be loaded (almost) last; the
few packages that must come after hyperref are all
well documented.

Read the documentation.

Processing the job

Once the file is created, it’s time to produce output.
There are several engines to choose from: pdfLATEX,
X ELATEX, and LuaLATEX. These can be run inter-
actively from the command line, or initiated from

2 ctan.org/search

an editor. Assuming there are no errors, how many
times a document must be processed to produce the
final output depends on what features it contains.

In particular, if any cross-references or \cites
are present, this information is written out to an
.aux file; information for a table of contents is writ-
ten to a toc file, and other tables are also possible.
The bibliography must be processed by a separate
program (and its log checked for errors) with the
reformatted bib data written out to yet another file.
Then LATEX must be run (at least) twice more — once
to read in the .aux and other secondary files and in-
clude the bibliography and resolved cross-references,
and the second time to resolve the correct page num-
bers (which will change when the TOC and similar
bits are added at the beginning).

All this assumes that there are no errors. Errors
will be recorded in the log file. Learn where the log
file is located, and make a habit of referring to it.
Warnings, such as those for missing characters, will
also be recorded there, but may not be shown online:
Missing character: There is no ⟨char⟩

in font ⟨font⟩!
In the log, some errors may appear with closely

grouped line numbers. If so, and the first is one
that interrupts the orderly processing of a scoped
environment, following errors may be spurious. So
fix the first error and try processing before trying to
understand the others; often, they may just go away.

Good luck. With practice comes understanding.
Oh. . . Remember to read the documentation.

Acknowledgment

Thanks to samcarter, Mikael Sundquist, and (as
always) Karl Berry for suggestions and for finding
and exterminating my typos. I can find them in
other people’s writing, but often not in my own.

References

[1] Barbara Beeton. Debugging LATEX files—
Illegitimi non carborundum, TUGboat 38:2,
159–164 (2017).
tug.org/TUGboat/tb38-2/tb119beet.pdf

⋄ Barbara Beeton
TUGboat
Providence, RI, USA
bnb (at) tug dot org

What every (LA)TEX newbie should know

https://ctan.org/search
https://tug.org/TUGboat/tb38-2/tb119beet.pdf

	Introduction
	Vocabulary
	Template
	Command line
	Log file

	Conventions
	Basic structure: Commands, modes, and scope
	Commands
	Environments
	Modes
	Scope

	Spacing in text
	Spurious spaces
	Sometimes using a % is a bad idea
	Really unexpected extra spaces

	Paragraph endings and vertical mode
	The double backslash

	Font changes
	Math
	Tables, figures, and other floats
	The document class and preamble
	Organizing your document

	Acknowledgment

