
TUGboat, Volume 44 (2023), No. 2 267

Report on the LATEX Tagged PDF workshop,
TUG 2023

David Carlisle, Ulrike Fischer,
Frank Mittelbach

Contents

1 Tagged PDF 267
1.1 Engine considerations 267
1.2 Tagging commands and Tagging acti-

vation 267
1.3 Compatibility with older formats and

legacy code 267
1.4 Tools 268

2 Updating a LATEX class 268
2.1 Adapting packages and classes 268
2.2 acmart 268

2.2.1 Review of packages and com-
mands 268

3 Tables 269

Introduction

On the afternoon before the formal conference pro-
gram, the LATEX project held a workshop, led by Ul-
rike Fischer, on generating tagged PDF from LATEX.
The workshop was well attended with more than
thirty people participating—a good mix of package
developers and end users. We thank DANTE e.V. for
very generous financial support.

The workshop was split into three parts. Firstly,
a general introduction to tagging in PDF. Secondly, a
demonstration of the process that a class or package
maintainer should take to modify the code to produce
well-tagged PDF. The acmart class was used for the
example as its author, Boris Veytsman, was attending
the workshop. Finally, we had a more open discussion
on issues and desired syntax for structured tables.

1 Tagged PDF

Ulrike gave a brief overview of how PDF tagging
encodes the structure of a document in a PDF file
and why with is important not “just” for accessibility
requirements. Readers are encouraged to read the
introduction to the tagpdf package for a similar, more
detailed exposition.

1.1 Engine considerations
The recommended engine for tagging is luaLATEX.
For legacy documents pdfLATEX is supported, but it
has some small problems, for example, it sometimes
doesn’t insert real space characters in places where

they are needed. It also requires more compilations
to build the correct tagging structure.

Other workflows such X ELATEX or LATEX–dvips
are not recommended as real space characters can’t
be inserted in these cases. In order for accessibility
tools to distinguish inter-word spaces from inter-
letter kerns and other spacing adjustments, words
need to be separated by space characters (U+0020)
even if the spacing is further adjusted. It is not feasi-
ble to add these space characters just using the macro
layer, and currently only pdfLATEX and luaLATEX have
engine-level support to add them.

When developing or updating packages or classes
for tagging, one always needs to test tagging with
at least pdfLATEX and luaLATEX. They use differ-
ent methods to create the basic MC-chunks (called
“marked-content sequences” in PDF reference man-
uals) and create the structure tree (namely, PDF

literals in pdfTEX and luaTEX node attributes in
luaTEX).

1.2 Tagging commands and Tagging
activation

The tagpdf-base package provides dummy versions
of all important tagging commands. It is loaded
automatically by \DocumentMetadata but can also
be loaded by other packages.

The tagpdf package is loaded (and tagging is
then automatically activated) by using a phase key:

\DocumentMetadata{testphase=phase-III}

It is possible to produce untagged PDFs with the
new code in latex-lab (both for the final version
or in draft mode to speed up compilation), but a
suitable interface is currently missing. It will be
added later.

1.3 Compatibility with older formats and
legacy code

The latex-lab code and tagging in general require
a current LATEX or even latex-dev. If necessary, a
class or package can test the format version with
\IfFormatAtLeastTF or \@ifl@t@r\fmtversion to
provide fallbacks for older formats.

Whether a document uses \DocumentMetadata
can be tested with \IfDocumentMetadataTF. With
\tag_if_active:TF it is possible to test if tagging
is active.

At the moment tagging can only be activated
through the testphase keys in \DocumentMetadata,
which cannot be used in a class because this com-
mand must come before \documentclass. This
means that at this point in time a class cannot trigger
tagging—during the test phase this is the decision of

doi.org/10.47397/tb/44-2/tb137carlisle-taggedpdfworkshop23

Report on the LATEX Tagged PDF workshop, TUG 2023

https://ctan.org/pkg/tagpdf
https://doi.org/10.47397/tb/44-2/tb137carlisle-taggedpdfworkshop23

268 TUGboat, Volume 44 (2023), No. 2

the author of the document. A class can only check
the state and issue an error or a warning if tagging
is not activated.

1.4 Tools

To check the tagging structure you need a tool, or
several. Some possible options:

• Adobe Acrobat Pro (non-free, adobe.com)
• PDF XChange Editor (a free version is
available, pdf-xchange.eu)

• PDFix (free Desktop Lite version is enough,
www.pdfix.net)

• PAC 2021 (a checker, pdfua.foundation/
de/pac-2021-der-kostenlose-pdf-

accessibility-checker). Currently it
doesn’t work with PDF 2.0.

• Big Faceless PDF Library (free trial version,
bfo.com/download). A Java library that can
also be used to dump information into text
files.

• RUPS (itextpdf.com/products/rups)

• An online service you can try: ngpdf.com

2 Updating a LATEX class

In the second part of the workshop the general prin-
ciples of how to update a package to be compatible
with PDF tagging were discussed, illustrated with
specific examples from acmart class.

2.1 Adapting packages and classes
Broadly, packages and classes have to handle two
problems:

• They often redefine internal LATEX commands
and environments (directly or through a package
or class they load) and this breaks the tagging
support provided by latex-lab.

• Any new commands and environments defined
by the package need to be adjusted to add or
correct the tagging.
Some general recommendations on strategies to

address these issues:
• For all existing redefinitions of LATEX’s core com-
mands, check their purpose and consider if the
redefinition can be avoided, e.g., by making us-
ing of the recently-introduced hooks in various
core commands of LATEX for precisely this rea-
son, or by making a feature request to enhance
the LATEX command to support your use case
directly or via new hooks.

• New commands and environments built on top
of existing commands can inherit the tagging

support from the kernel. For example, bibliogra-
phies are typically simply lists. Check if the
resulting structure is ok.

• Paragraphs are automatically tagged through
the paragraph hooks. Not every structure is al-
lowed inside a paragraph. It is therefore impor-
tant to check how your own commands behave
both in horizontal and vertical modes.

• Complex commands can be difficult to tag cor-
rectly. For a first draft it is possible to put
a minimal structure around them and then to
stop tagging. As an example, a complicated
\maketitle command could be handled as fol-
lows, i.e., by disabling tagging for the title:
\AddToHook{cmd/maketitle/before}

 {\tagstructbegin{tag=Title}%
 \tagmcbegin{}\tagstop }

\AddToHook{cmd/maketitle/after}

 {\tagstart\tagmcend\tagstructend}
Participants were, and readers of this report are,

encouraged to give feedback. The tagging support is
still in development. If something doesn’t work as
expected or is too complicated we need to know about
it. Comments can be added as issues or discussions
at github.com/latex3/tagging-project.

2.2 acmart

The acmart class is used to typeset articles for the
Association for Computing Machinery. It is around
3500 lines of code, based on amsart, and supports
various journal styles.

The aim of the workshop was not to fully up-
date the entire class to be tagging-aware, but to
show the steps needed for this, and to show how
relatively simple changes can already significantly
improve the automatic tagging in documents, even
when generated by large production journal code.

2.2.1 Review of packages and commands

The initial step was to generate a list of all pack-
ages used by the class, around 40 packages in this
case. Some are known not to affect tagging, some
(notably those affecting footnotes such as manyfoot
and nccfoots) may affect footnote tagging. They
would need to be checked in a final version; specif-
ically, whether newer versions of the packages are
tagging-aware or whether there is “first-aid” support
for the package in the latex-lab code.

The main issue addressed in this session was
classes that copy “original” definitions of standard
LATEX commands, but often they copy older ver-
sions and so are missing updates, in particular the
(relatively) recent changes to add LATEX hooks and
tagging support.

David Carlisle, Ulrike Fischer, Frank Mittelbach

https://adobe.com
https://pdf-xchange.eu
https://www.pdfix.net
https://pdfua.foundation/de/pac-2021-der-kostenlose-pdf-accessibility-checker
https://pdfua.foundation/de/pac-2021-der-kostenlose-pdf-accessibility-checker
https://pdfua.foundation/de/pac-2021-der-kostenlose-pdf-accessibility-checker
https://bfo.com/download
https://itextpdf.com/products/rups
https://ngpdf.com
https://github.com/latex3/tagging-project

TUGboat, Volume 44 (2023), No. 2 269

For example, in the case of acmart, it intends
to simply restore standard LATEX section headings
(undoing the changes made by the underlying amsart
class). It does this by redefining \@startsection

and related commands using copies from an older
LATEX format. This has the effect of undoing the
additions to support tagging section headings added
by the tagging code.

In this case, a simple fix would be to modify
the class to save the definitions (for example with
\DeclareCommandCopy) before loading amsart and re-
store them afterwards. This has the effect of restoring
the tagging-aware section commands, if they were
activated by \DocumentMetadata.

Pointers were given to changes that would be
required in other parts of the class. Tables of con-
tents would need changes equivalent to the changes
made for tagging to the standard \@dottedtocline

and \@starttoc commands. The class has quite
extensive code modifying footnotes and this must
be checked for tagging. Perhaps in initial versions,
tagging would be disabled for footnotes.

As noted above, the title page handling (as is
common in journal classes) is rather complicated and
would need some custom tagging support, but can
in initial versions be easily customized not to tag, so
that no invalid tag structures are generated.

Similarly, the class has redefinitions of minipage
that would conflict with minipage tagging and need
to be checked.

In the workshop there was only time to look at
the redefinitions of standard commands made by the
class, and how to recover tagging support based on
the support implemented for the standard definitions.
What was not addressed in the session—but would
be needed for a fully tagging aware class file—would
be to add appropriate tagging support to any new
commands and environments defined by the class.
This requires understanding of not only the TEX
coding details but also, and more importantly, an
understanding of the intended structure implied by
the commands; that is, what tagged structure would
be desirable in each case.

Going forward, this raises an important point
for class and package maintainers. To produce well-
tagged documents it is not only important to produce
a pleasing visual layout for new constructs, it is
equally important to think about what structures
are represented, and how that structure should be
tagged. For example, “misusing” other elements for
purely visual effects is likely to produce completely
inadequate structural results.

3 Tables

The final part of the workshop involved a lively dis-
cussion of markup for tables. It is already possible to
use the low-level tagging commands from tagpdf to
tag tables and individual cells, although the current
test phase does not have code to automatically infer
table structure.

The main problem is that classic LATEX tabular

markup does not distinguish table headers or any
other structural features, it is purely concerned with
the visual layout.

This leads to two related issues:
1. What would be a good table markup for new

documents?

2. What heuristics could or should be used to infer
table structure for the existing corpus of LATEX
documents?

For the first issue, markup used by LATEX ta-
ble packages were considered, also ConTEXt table
markup, and the table markup in HTML (which is
very close to the final required structured tagging in
PDF).

For the second issue, various possibilities were
discussed ranging from a view that it is better never
to “guess” and that no table headings should be
inferred, through a simple heuristic such as always
assuming the first row is a heading, to more de-
tailed heuristics looking at fonts and/or position of
\toprule from booktabs or \endhead from longtable.

This is still very much an area of ongoing activity
for the LATEX team, and people are invited to con-
tribute to the discussion which is now online in the
GitHub discussion site set up for the tagging project
mentioned earlier: github.com/latex3/tagging-

project/discussions/1 has some thoughts from
workshop participants on the table syntax. Feel free
to join the party with further ideas.

⋄ David Carlisle
LATEX project team
Oxford, UK
david.carlisle (at) latex-project.org

⋄ Ulrike Fischer
LATEX project team
Bonn, Germany
ulrike.fischer (at) latex-project.org

⋄ Frank Mittelbach
LATEX project team
Mainz, Germany
frank.mittelbach (at) latex-project.org

Report on the LATEX Tagged PDF workshop, TUG 2023

https://github.com/latex3/tagging-project/discussions/1
https://github.com/latex3/tagging-project/discussions/1

	Tagged PDF
	Engine considerations
	Tagging commands and Tagging activation
	Compatibility with older formats and legacy code
	Tools

	Updating a LaTeX class
	Adapting packages and classes
	acmart
	Review of packages and commands

	Tables

