
TUGboat, Volume 44 (2023), No. 2 249

Living in containers—on TEX Live
(and ConTEXt) in a Docker setting

Island of TEX

Abstract

Over the course of the last year(s), the Island of TEX
has received quite some interest in its Docker con-
tainers. This article gives a brief overview about our
container infrastructure for TEX Live and ConTEXt,
including some examples on using our containers in
production environments. Last but not least, we
will elaborate on some interesting (mostly still open)
problems connected to containerizing TEX Live.

1 Overview of the Island’s Docker images

Since 2019, the Island of TEX provides multiple
Docker images for TEX Live and ConTEXt. Our first
publication on this topic was in TUGboat, Volume 40
(2019), No. 3 and stays mostly relevant. Therefore,
let us keep this introductory section short.

We still conceive Docker as an easy way to ship a
portable setup of software to users by providing them
with an operating system layer, operating system
packages (like Python) and the software layer (in our
case TEX Live or ConTEXt LMTX) bundled into one
single compressed file (the Docker image; simplified
but sufficient for visualization). By pulling a Docker
image the user has a reproducible setup at hand
without caring about his own host operating system
or software dependencies.

To this end, we provide a fairly minimal Con-
TEXt LMTX image (contextgarden/context:lmtx)
with the LMTX standalone distribution and the mod-
ules that ship with this ConTEXt distribution. The
image is based on Debian (testing branch) and is
about 250MB in size.

On the other end of the spectrum we provide
Docker images for TEX Live (texlive/texlive) in
different flavors. For all releases from 2013 on up
until the latest historic release (currently 2022), we
provide the historic images following the naming
scheme TL{YEAR}-historic. They always contain
a scheme-full TEX Live installation without doc-
umentation and source tree unless you explicitly
request one or the other of these removed trees by
appending -doc or -src respectively (doc first if you
want to have both, e.g. TL2022-historic-doc-src).

Like the ConTEXt images, the historic images
are based on Debian’s testing branch. Additionally,
they ship with required software to run most of the
tools included in TEX Live, e.g. Java for tools like
arara, Python for pygments (needed for the popular
minted package), and so on. This comes at a cost:

the TL2022-historic image without documentation
and source files tips the scales at 2.16GB.

A note on the word historic: The images are
structured into multiple layers, one of them being the
historic TEX Live tree that does not change. However,
the other layers which contain the operating system
and OS software packages are updated monthly. This
does not necessarily reflect the operating system soft-
ware situation that has been present in the historic
TEX Live release’s year but is beneficial from multi-
ple other points of view, e.g. when you want to run
your own scripts for pre- or postprocessing.

Apart from the historic images, we provide im-
ages for the latest release of TEX Live (currently
2023). The basic setup concerning the Debian base
and software packages is identical to the historic
images. However, in addition to splitting off the doc-
umentation and source tree you may request any of
the TEX Live schemes of the latest release by append-
ing a hyphen and the scheme’s name to the latest
tag, e.g. latest-small or latest-medium-doc, to
name just two variations. The default latest tag
will pull a scheme-full installation: handle with
care. All these various images are updated weekly,
with both Debian and TEX Live package updates.

You can find our images on both Docker Hub:
hub.docker.com/r/texlive/texlive

hub.docker.com/r/contextgarden/context

and our GitLab registry; see the projects’ code repos-
itories at:
gitlab.com/islandoftex/images/texlive

gitlab.com/islandoftex/images/context

2 Using the images in a local setup

One of the two primary use cases we focus on when
developing the images is use in a local environment,
i.e. replacing your local TEX Live installation. To
start off, let us emphasize that usually, especially
when using the latest TEX Live release locally, you do
not want to use our Docker images here for various
reasons including imperfect updating strategies and
space overhead.

However, in many settings there are a number
of benefits using Docker images locally, especially
when using the historic images. For the sake of this
discussion, let’s suppose you are coordinating a team
who have used LATEX for their various documents on
various operating systems for years.

. . . enter story telling mode . . .

Now let’s imagine a new, not so tech-savvy, con-
tributor joining; meet Bob. You have to explain
to him how to install a TEX installation on his ma-
chine which runs an operating system you are not
comfortable interacting with. You use last year’s

doi.org/10.47397/tb/44-2/tb137island-docker

Living in containers—on TEX Live (and ConTEXt) in a Docker setting

https://hub.docker.com/r/texlive/texlive
https://hub.docker.com/r/contextgarden/context
https://gitlab.com/islandoftex/images/texlive
https://gitlab.com/islandoftex/images/context
https://doi.org/10.47397/tb/44-2/tb137island-docker

250 TUGboat, Volume 44 (2023), No. 2

image: registry.gitlab.com/islandoftex/images/texlive:TL2022-historic

build:

script:

- find -name "*.tex" -exec arara -v "{}" \;

artifacts:

paths:

- ./**/*.pdf

Figure 1: Preliminary .gitlab-ci.yml file to rebuild all .tex sources with arara.

TEX Live release so you have to refer Bob to one
of the guides on how to install a historic TEX Live
release there. And you use arara for build manage-
ment and minted in your documents . . . the thought
of guiding Bob through Java and Python installa-
tions and debugging a setup on another operating
system is not that appealing. But wait a minute,
at this point you could also refer him to one of
the various setup guides for Docker and let him
docker pull texlive/texlive:TL2022-historic

and be done.
No sooner said than done. Bob now has his

Docker-based TEX Live up and running, including
all the dependencies needed for his daily typesetting.
He creates his first document and runs it in the
Docker container using:

docker run -i \

-v "$PWD":/opt/doc:z -w /opt/doc \

texlive/texlive:TL2022-historic \

arara -v document.tex

To avoid typing all this every time, he configures his
editor to run this command on compilation. Bob is
happy, you are happy, onboarding done.

As a short interlude for the interested reader:
the longish command above pulls and runs the his-
toric image of TEX Live 2022 from Docker Hub (re-
member that it is the image without documentation
or sources). When it starts the image, it will mount
the current working directory in the Docker image,
ensuring that all documents are accessible and the
build results will appear there. It then starts the
arara call at the end of the command, in interactive
mode so you can interact with the output of the com-
mand transparently through the Docker boundary.

A week later, Bob is tasked to typeset an up-
dated version of one of the older documents which
does not compile on TEX Live 2022 any more. To see
how it looked back then, an older TEX Live release is
needed. Luckily, you have avoided needing to remind
him of the installation instructions for a historic TEX
Live release just to find yourself in the situation to
explain to him how to set the PATH variable of his
operating system to the older release and back to

the newer one. You just let him duplicate his editor
configuration for TEX Live 2022 and use the older
release.

docker run -i \

-v "$PWD":/opt/doc:z -w /opt/doc \

texlive/texlive:TL2018-historic \

arara -v document.tex

and everything works. Docker even pulled the image
on first use without needing a separate pull com-
mand.

Now that you just happened to have finished
onboarding a new contributor you decide to write
a short setup guide for future new contributors in
your team. Interestingly enough, the whole setup
guide fits onto one A4 page. Happy that you have
a concise guide covering everything from installing
to running multiple TEX Live releases with a repro-
ducible environment and dependencies, you close
that onboarding chapter.

3 Using the images in a CI setting

Bob got hooked, all this Docker business was easy
enough to be well hidden behind his editor for now.
All this technical stuff being a bit magical to him he
would still like to verify that documents he makes
available to you will always compile. As you are using
GitLab anyway, you introduce him to git (a lot more
work than the one A4 page for the local setup) and set
up a continuous integration pipeline on your GitLab
instance that compiles all the documents when a new
commit is pushed.

The setup is simple: you add a .gitlab-ci.yml
file to your repository which has the content shown
in figure 1.

Done. The pipeline runs and finishes . . . after
quite some time. Waiting 10 minutes for the feed-
back that the documents Bob just touched compile
seems a bit subpar to you. Your inner Don Knuth
starts yelling at you about something with premature
optimization but you are convinced: the repository
grows, it cannot be a good idea to always run all
documents when we are only interested in potential
compilation errors of a few of them.

Island of TEX

TUGboat, Volume 44 (2023), No. 2 251

So your preferred setup would instead look some-
thing like this:

...

script:

- bash compile-only-needed.sh

...

with some bash magic taking care of compiling only
what is needed. A deep dive into GitLab’s documen-
tation later you see this is not as hard as you had
imagined. So your bash script is surprisingly short:

#!/usr/bin/env bash

gitsha="$(curl \

--header "PRIVATE-TOKEN: \

$GL_API_ACCESS_TOKEN" \

"https://gitlab.com/api/v4/projects/\

$CI_PROJECT_ID/pipelines?ref=$CI_DEFAULT_BRANCH\

&sort=desc&status=success" \

| grep -o -E -m1 ’"sha":"([^"]*)"’ \

| head -1 | cut -c 8-47)"

changed_files=$(git diff-tree \

--no-commit-id --name-only -r \

"$gitsha".."$CI_COMMIT_SHA")

compile_all=false

for file in $changed_files; do

if [[$file == texmf/*]]; then

compile_all=true

break

fi

done

if ["$compile_all" = true]; then

latex_files=$(find . -name "*.tex")

for file in $latex_files; do

if grep -Fq "arara" "$file"; then

base_dir="$(dirname "$file")"

base_name="$(basename "$file")"

cd "$base_dir"

arara -v "$base_name"

cd "$(git rev-parse --show-toplevel)"

fi

done

else

for file in $changed_files; do

base_dir="$(dirname "$file")"

base_name="$(basename "$file")"

if [[! -f "$file"]] \

|| [["$file" != *.tex]] \

|| ! grep -Fq "arara" "$file"; then

continue

fi

cd "$base_dir"

arara -v "$base_name"

cd "$(git rev-parse --show-toplevel)"

done

fi

You know that you ignored most of the sanity
checking you should have done. But as the old en-
gineering adage says: “it works”. It even takes into
account that it needs to recompile everything if one
of your “global” files changes— the ones you have in
your texmf folder in your repository like your logo,
custom packages, etc.

The basic structure is even easy to explain: first,
the GitLab API is queried for the last commit on your
default branch a pipeline has successfully run. Then,
git is run to determine all files that have changed
since that commit. If one of the changed files affects
all documents, the CI runs basically the find call of
your first CI example1 with some directory changes.
If no such file has been changed, arara is run on all
relevant changed LATEX sources.

With this simple bash script, you successfully
turned your 10 minute pipeline into a 3 minute on
average pipeline leaving you quite satisfied but won-
dering why it takes so long to typeset one or two
documents.

A short investigation of the CI log later you
have identified the culprit: you use the full TEX Live
image, i.e. scheme-full which pulls more than 2GB

each time your pipeline runs, making up more than
2 minutes of that 3 minutes. Unfortunately, you are
using a historic image which does not provide a split
by schemes (and you use too many packages anyway)
so you cannot slim down on that one. But you notice
that your team has spare server capacity and set up
a GitLab runner for your project that caches the
historic TEX Live images.

Now that you have successfully reduced your
average pipeline to less than one minute running time
you are confident that it is future-proof enough. And
after a few more minutes than originally intended
you have successfully implemented Bob’s request.

. . . story telling mode off . . .

4 Maintenance challenges of the
TEX Live images

The Island of TEX manages and builds all its Docker
images using GitLab and the GitLab CI. Unfor-
tunately, we reached some limits on the main in-
stance at gitlab.com quite early in our image build
processes. Thanks to Marei Peischl and Vı́t Starý
Novotný we have access to custom CI runners (read:
servers that build our images) which have massively
improved the stability of our build process.

1 At this point we should add that that find call in the
first example would not work properly due to executing arara

in the wrong base directory, which is a bad idea in general.
But as it was a motivating example and is fixed in the bash
script, we consider this error a case of “no harm done”.

Living in containers—on TEX Live (and ConTEXt) in a Docker setting

https://gitlab.com

252 TUGboat, Volume 44 (2023), No. 2

However, there is still something calling for man-
ual intervention every other week. So we are inter-
ested in improving our build setups to avoid all this
intervention. Part of that will include switching to
new infrastructure, and part of that in turn will
include optimizing the build process and caching.

To further build optimizations, we would like
to provide the historic images split by scheme as
we do for the latest images. This will require more
substantial changes than we would like to admit but
also bring the benefits of smaller images to many,
especially as we acknowledge the importance of the
historic images.

Revisiting the topic of automation, there is a
minor annoyance also caused by requiring manual
intervention: each year, when a new TEX Live is
released we have to add the now-historic TEX Live
to our build matrix for historic images. We would
like to fix this but have not found the way to go yet.
Ideas are welcome.

Another topic that looks for helping hands is
the layering of the TEX Live images. This is espe-
cially important with the split by schemes which
could potentially be layered on top of each other but
also to improve the update situation for local uses of
the latest images. Experimentation, ideas, and fruit-
ful discussions on our issue tracker at gitlab.com/
islandoftex/images/texlive/-/issues would be
greatly appreciated.

Last but not least, there is one topic that has
been a challenge so far but is on the short-term
roadmap of actually being resolved: providing multi-
architecture images. Currently, our images only pro-
vide binaries for the x86_64 architecture but a few
platforms, most notably smartphones and Raspberry
Pis, run on a different architecture, namely ARM.
TEX Live ships with binaries for these architectures
and by the next time you hear from us we hope our
images do too.

⋄ Island of TEX
https://gitlab.com/islandoftex

https://islandoftex.gitlab.io

https://gitlab.com/islandoftex/images/texlive/-/issues
https://gitlab.com/islandoftex/images/texlive/-/issues

	Overview of the Island's Docker images
	Using the images in a local setup
	Using the images in a CI setting
	Maintenance challenges of the TeX Live images

