
252 TUGboat, Volume 44 (2023), No. 2

News from the HINT project: 2023

Martin Ruckert

Abstract

The HINT file format [5] was presented at TUG 2019
[4], and at TUG 2020 [6], the first usable viewer for
HINT files was presented. The HiTEX engine became
part of TEX Live in 2022. This presentation will
explore the changes that have taken place since then
and what to expect in the future. This article will

• explain the improvements in glyph rendering in
more recent versions of the HINT file viewer;

• describe the use of links, labels, and outlines;
• present hints on how to design TEX macros for

variable page sizes;
• and discuss the capabilities of the HINT file for-

mat to convert pages to plain text for searching
or text-to-speech processing.

1 Displaying glyphs

Initially, the HINT viewer supported only .pk fonts.
These font files contain METAFONT fonts at a fixed
resolution, usually 600 dpi. Rendering such a font
on a computer screen with a typically much lower
resolution, was done in three steps:

1. Decoding the font file header and caching it for
later use.

2. Decoding a glyph into a black and white bitmap
and caching it for later use.

3. For each pixel on screen intersecting the glyph’s
bounding box

• map the pixel center to a source point in
the glyph’s bitmap, and

• compute the pixel’s gray value by linearly
interpolating the black and white values
of the four pixels surrounding the source
point in the bitmap.

Since high resolutions, even above 300 dpi, are com-
mon on small mobile devices, the results were more
than acceptable on these devices. On ordinary com-
puter screens, typically with resolutions less than
100 dpi, the results were insufficient. In particular,
the rendering of thin lines would distribute the avail-
able amount of black ink over a two-pixel-wide area
and the line would fade away into a blurry light-gray.

Things changed with the use of the FreeType
font rendering library [7]. This library can render
PostScript Type 1 outline fonts at any resolution de-
sired. After replacing the .pk fonts by .pfb fonts,
the viewer could render the glyphs as gray-value bit-
maps for the actual screen resolution [3]. To produce
good looking glyphs from an outline font, first the

doi.org/10.47397/tb/44-2/tb137ruckert-hint23

Martin Ruckert

https://doi.org/10.47397/tb/44-2/tb137ruckert-hint23


TUGboat, Volume 44 (2023), No. 2 253

positions of key points of the outline, for example
the points where the outline has a horizontal or ver-
tical tangent, will be rounded to the pixel grid. Af-
ter that, pixels that are only partly covered by the
outline will be assigned gray values, depending on
the amount of coverage. This results in less blur
and consistent stroke widths, improving readability
especially for small font sizes.

The quality of the font rendering in the HINT

viewer was, however, still inferior to a rendering of
the same font by other programs. The reason was
that the viewer would not map the glyph bitmap
one to one to the screen but instead would map
the bitmap to TEX’s exact glyph position —usually
not aligned to the pixel grid— using step 3 as given
above.

To improve readability at small font sizes, the
current viewer rounds the glyph position to the pixel
grid before rendering the glyph. It also replaces the
linear interpolation of pixel values by using the gray
value of the nearest source pixel. The rounding will
occur only if the font size is below a given threshold.
In principle the rounding can be split into rounding
horizontal and rounding vertical position. While the
first affects character distances, the latter moves en-
tire lines and is less distracting. For a demonstra-
tion, see [3].

a) no alignment b) vertical alignment

c) horizontal alignment d) full alignment

Figure 1: A cmr 10pt V with different alignment to
the pixel grid.

Further improvements are possible, but not yet
implemented. One potential method is oversam-
pling, where a glyph is rendered at, for example,
four different horizontal positions on the pixel grid.
Choosing one of these four renderings, the horizontal
glyph position must be rounded to 1/4 of the pixel
size which is far less distracting. Another method is

sub-pixel rendering. This method uses the fact that
one white pixel on screen actually consists of three
colored dots: red, green, and blue. So by consid-
ering them as independent light sources, the hori-
zontal resolution can be tripled. This improves the
positioning but leads to colored borders which some
people find distracting.

2 Links, labels, and outlines

People my age learned how to navigate through thick
books already in primary school, if not in kindergar-
ten. These skills are more or less obsolete when it
comes to navigating through “thick” electronic doc-
uments. So good replacements are necessary. The
most obvious point to start exploring a book is its
table of contents where for each section the corre-
sponding page number is listed. The HINT file for-
mat supports the concept of a home page: a position
in the document identified by the author that can be
reached in the viewer with a single key stroke, touch,
or click. The HINT document, however, has no fixed
page numbers. The pages grow and shrink with the
window size (and with the magnification factor). So
instead, a table of contents must use a clickable link
that brings you immediately to the section in ques-
tion. Similar links are used for the table of figures,
index, and all kinds of cross-references, be it to indi-
vidual parts of the text, a figure, a table, a citation,
or a displayed formula.

As an alternative to the table of contents, the
HINT file format also supports “outlines”: A clickable
table of contents, hierarchically organized and dis-
played in a separate window. To allow optimal use
of the available space, sub-levels of the hierarchy can
be hidden or expanded as needed [3].

At present, a driver [2] for the LATEX hyperref
package offers support for most of the above fea-
tures.

In one respect HINT files are radically different
from books and PDF files: There are no predefined
pages. So following a link is not as simple as display-
ing a page with a given page number, but requires
finding two good page breaks so that the target is
on the page between them. The algorithm used in
the current HINT viewer is still under development
and there are cases where the choice of page breaks
could be better.

3 Designing macros for variable pages

The traditional implementation of centering text is
the \centerline macro. It expands to \hbox to
\hsize{\hfill text \hfill} which will look nice
as long as the text is shorter than \hsize. If the
text is longer, it will produce an overfull box, stick

News from the HINT project: 2023



254 TUGboat, Volume 44 (2023), No. 2

out into the margin, and even go past the edge of the
window. A better solution uses TEX’s line breaking
procedure which requires a vertical box.
\vbox{\rightskip 0pt plus2em

\leftskip=\rightskip
\parfillskip=0pt\parindent 0pt
\spaceskip.3333em

\xspaceskip.5em\relax
This is Text Centered on the Page
}
Letting \rightskip and \leftskip stretch enough,
but not too much, so that the line breaking routine
will try to keep the lines filled but still has enough
room to produce decent lines (see [3]). The inter-
word glue, on the other hand, is prevented from
stretching. It could be made to allow some shrinking
to gain additional flexibility.

The only new feature introduced in HiTEX since
2019 is support for \vtop. This is important because
writing for variable page sizes often requires replac-
ing a horizontal box by a vertical box to enable the
breaking of paragraphs into lines. \vtop is required
if multiple vertical boxes need to be aligned on the
top baseline (see [3]).

4 Searching

The user input in a search field is just a plain se-
quence of characters coded in UTF-8 or perhaps an-
other encoding such as ISO 8859-1. The text as rep-
resented in a TEX document is far more complex
and searching requires finding a match between both
representations. Even if the input consists only of
ASCII characters the HINT viewer must handle some
special cases.

If the word the user wants to find uses a liga-
ture, the match is made using the replacement char-
acters, which are retained in TEX’s ligature node.
If the word on the page is hyphenated and split
across lines, the match must ignore extra characters
inserted by the pre- and post-hyphenation lists, as
well as the space that is usually separating the word
at the end of one line from the word that starts the
new line.

Thus, the HINT backend provides a function
that converts entire pages into sequences of char-
acters moving from top left to bottom right, elimi-
nating the effects of ligatures and hyphenations and
condensing various combinations of glue— indenta-
tions, spaces, baseline skips, left skips, and right
skips, to name just a few— to a single space. Kerns,
meanwhile, are completely ignored. An infelicity
here is the definition of the LATEX macro, which uses
a glue instead of a kern between ‘A’ and ‘T’. So you
have to search for “LA TEX”.

It is planned to use the page-to-string function
also to feed a text-to-speech converter.

Currently searching does not work well with
non-ASCII characters, but it is planned to imple-
ment UTF-8 as the default encoding used for HiTEX
and HINT files.

5 New viewers for Linux, macOS, and iOS

Together with the viewers for Windows and An-
droid, the applications for Linux, macOS, and iOS
complete the set of viewers. The Windows applica-
tion, being the oldest and my workhorse for conduct-
ing experiments, is the most complex. The applica-
tion for macOS is the most recent and was presented
on Jonathan Fine’s TEX Hour [1, 3]. The applica-
tion for Linux is the simplest: it consists beside the
backend and the OpenGL renderer (shared between
all applications) of only a 600-line main program [2].
This is a good starting point for writing your own
viewer.

References

[1] J. Fine, M. Ruckert, et al. Rethinking TEX in
STEM. texhour.github.io/2022/09/29/
rethink-tex-in-stem/, Sept. 2022.

[2] M. Ruckert. HINT source repository.
github.com/ruckertm/HINT.

[3] M. Ruckert. The HINT video collection.
hint.userweb.mwn.de/hint/video/.

[4] M. Ruckert. The design of the HINT file
format. TUGboat 40(2):143–146, 2019. tug.
org/TUGboat/tb40-2/tb125ruckert-hint.
pdf

[5] M. Ruckert. HINT: The File Format. 2019.
ISBN 1-079-48159-1.
amazon.com/dp/1079481591

[6] M. Ruckert, G. Socher. The HINT project:
Status and open questions. TUGboat
41(2):208–211, 2020. tug.org/TUGboat/
tb41-2/tb128ruckert-hint.pdf

[7] D. Turner, W. Lemberg, et al. FreeType.
www.freetype.org/.

⋄ Martin Ruckert
Hochschule München
Lothstrasse 64
80336 München
Germany
martin.ruckert (at) hm dot edu

Martin Ruckert

https://texhour.github.io/2022/09/29/rethink-tex-in-stem/
https://texhour.github.io/2022/09/29/rethink-tex-in-stem/
https://github.com/ruckertm/HINT
https://hint.userweb.mwn.de/hint/video/
https://tug.org/TUGboat/tb40-2/tb125ruckert-hint.pdf
https://tug.org/TUGboat/tb40-2/tb125ruckert-hint.pdf
https://tug.org/TUGboat/tb40-2/tb125ruckert-hint.pdf
https://amazon.com/dp/1079481591
https://tug.org/TUGboat/tb41-2/tb128ruckert-hint.pdf
https://tug.org/TUGboat/tb41-2/tb128ruckert-hint.pdf
https://www.freetype.org/

	Displaying glyphs
	Links, labels, and outlines
	Designing macros for variable pages
	Searching
	New viewers for Linux, macOS, and iOS

