
226 TUGboat, Volume 44 (2023), No. 2

Standardizing OpenType math fonts

Hans Hagen, Mikael P. Sundqvist

1 Introduction

ConTEXt has always had a good support for the
typesetting of mathematics. ConTEXt MkII uses the
pdfTEX engine and hence traditional (Type 1) fonts.
Several math fonts are available, specifically designed
to work seamlessly with TEX. ConTEXt MkIV, the
successor version, utilizes the LuaTEX engine, provid-
ing support not only for traditional fonts but also for
OpenType Unicode math fonts. Unlike the X ETEX
engine, which interpreted these new fonts in a man-
ner similar to traditional TEX fonts, LuaTEX adheres
more closely to the (unfortunately somewhat vague)
OpenType specification.1 When new fonts appeared,
some were more like the traditional fonts, others
more like OpenType Unicode math fonts. This leads
to difficulties in achieving consistent results across
different fonts and might be one reason that the
Unicode engines are not yet used as much as they
probably should.

In autumn 2021 we started to discuss how to
improve the typesetting of OpenType Unicode math-
ematics, and it was natural to go on and do this
for the LuaMetaTEX engine, and hence for Con-
TEXt LMTX. Since then, we have been engaging in
daily discussions covering finer details such as glyphs,
kerning, accent placement, inter-atom spacing (what
we refer to as math microtypography), as well as
broader aspects like formula alignment and formula
line breaking (math macrotypography). This article
will primarily focus on the finer details. Specifically,
we will explore the various choices we have made
throughout the process. The OpenType Unicode
math specification is incomplete; some aspects are
missing, while others remain ambiguous. This issue
is exacerbated by the varying behaviors of fonts.

We make runtime changes to fonts, and add a
few additional font parameters that we missed. As
a result, we deviate from the standard set by Mi-
crosoft (or rather, we choose to interpret it in our
own way) and exercise the freedom to make runtime
changes to font parameters. Regarding this aspect,
we firmly believe that our results often align more
closely with the original intentions of the font design-
ers. Indeed, the existence of “oddities” in these fonts
may be attributed to the lack of an engine, during
their creation, that supported all the various features,
making testing difficult, if not essentially impossible.
Within ConTEXt LMTX, we have the necessary sup-

1 learn.microsoft.com/en-us/typography/opentype/

spec/math

port, and we can activate various helpers that allow
us to closely examine formulas. Without them our
work would not have been possible.

Ultimately, we hope and believe that we have
made straightforward yet effective choices, rendering
the existing OpenType Unicode math fonts usable.
We hope that this article might be inspiring and
useful for others who aim to achieve well-designed,
modern math typesetting.

2 Traditional vs. OpenType math fonts

There is a fundamental difference between traditional
TEX math fonts and OpenType Unicode fonts. In
the traditional approach, a math setup consists of
multiple independent fonts. There is no direct rela-
tionship between a math italic x and an ˆ on top
of it. The engine handles the positioning almost
independently of the shapes involved. There can be
a shift to the right of x̂ triggered by kerning with a
so-called skew character but that is it.

A somewhat loose coupling between fonts is
present when we go from a base character to a larger
variant that itself can point to a larger one and
eventually end up at an extensible recipe. But the
base character and that sequence are normally from
different fonts. The assumption is that they are
designed as a combination. In an OpenType font,
variants and extensibles more directly relate to a
base character.

Then there is the italic correction which adds
kerns between a character and what follows depend-
ing on the situation. It is not, in fact, a true italic
correction, but more a hack where an untrue width is
compensated for. A traditional TEX engine defaults
to adding these corrections and selectively removes
or compensates for them. In traditional TEX this
fake width helps placing the subscript properly while
the italic correction is added to the advance width
when attaching subscripts and/or moving to the next
atom.

In an OpenType font we see these phenomena
translated into features. Instead of many math fonts
we have one font. This means that one can have
relations between glyphs, although in practice lit-
tle of that happens. One example is that a specific
character can have script and scriptscript sizes with
a somewhat different design. Another is that there
can be alternate shapes for the same character, and
yet another is substitution of (for instance) dotted
characters by dotless ones. However, from the per-
spective of features a math font is rather simple and
undemanding.

Another property is that in an OpenType math
font the real widths are used in combination with

doi.org/10.47397/tb/44-2/tb137sundqvist-otmath

Hans Hagen, Mikael P. Sundqvist

https://learn.microsoft.com/en-us/typography/opentype/spec/math
https://learn.microsoft.com/en-us/typography/opentype/spec/math
https://doi.org/10.47397/tb/44-2/tb137sundqvist-otmath

TUGboat, Volume 44 (2023), No. 2 227

optional italic correction when a sequence of charac-
ters is considered text, with the exception of large
operators where italic correction is used for position-
ing limits on top and below. Instead of abusing italic
corrections this way, a system of staircase kerns in
each corner of a shape is possible.

Then there are top (but not bottom) anchor
positions that, like marks in text fonts, can be used
to position accents on top of base characters or boxes.
And while we talk of accents: they can come with
so-called flat substitutions for situations where we
want less height.

All this is driven by a bunch of font parameters
that (supposedly) relate to the design of the font.
Some of them concern rules that are being used in
constructing, for instance, fractions and radicals but
maybe also for making new glyphs like extensibles,
which is essentially a traditional TEX thing.

So, when we now look back at the traditional
approach we can say that there are differences in the
way a font is set up: widths and italic corrections,
staircase kerns, rules as elements for constructing
glyphs, anchoring of accents, flattening of accents,
replacement of dotted characters, selection of smaller
sizes, and font parameters. These differences have
been reflected in the way engines (seem to) deal with
OpenType math: one can start with a traditional
engine and map OpenType onto that; one can im-
plement an OpenType engine and, if needed, map
traditional fonts onto the way that works; and of
course there can be some mix of these.

In practice, when we look at existing fonts, there
is only one reference and that is Cambria. When
mapped onto a traditional engine, much can be made
to work, but not all. Then there are fonts that
originate in the TEX community and these do not
always work well with an OpenType engine. Other
fonts are a mix and work more or less. The more
one looks into details, the clearer it becomes that
no font is perfect and that it is hard to make an
engine work well with them. In LuaMetaTEX we
can explicitly control many of the choices the math
engine makes, and there are more such choices than
with traditional TEX machinery. And although we
can adapt fonts at runtime to suit the possibilities,
it is not pretty.

This is why we gradually decided on a somewhat
different approach: we use the advantage of having a
single font, normalize fonts to what we can reliably
support, and if needed, add to fonts and control the
math engine, especially the various subsystems, with
directives that tell it what we want to be done. Let
us discuss a few things that we do when we load a
math font.

3 Getting rid of italic corrections

OpenType math has italic corrections for using char-
acters in text and large operators (for limits), stair-
case kerns for combining scripts, and top anchor
for placement of accents. In LuaMetaTEX we have
access to more features.

Let’s remind ourselves. In a bit more detail,
OpenType has:

• An italic correction is injected between char-
acters in running text, but: a sequence of atoms
is not text, they are individually spaced.

• An italic correction value in large operators
that reflects where limits are attached in display
mode; in effect, using the italic correction as an
anchor.

• Top anchors are used to position accents over
characters, but not so much over atoms that
are composed from more than characters, e.g.,
including fractions, fences, radicals, and so on.

• Flat accents as substitution feature for situa-
tions where the height would become excessive.

• Script and scriptscript as substitution fea-
ture for a selection of characters that are sensi-
tive for scaling down.

This somewhat limited view on math character
positioning has been extended in LuaMetaTEX, and
we remap the above onto what we consider a bit
more reliable, especially because we can tweak these
better. We have:

• Corner kerns that make it possible to adjust
the horizontal location of sub- and superscripts
and prescripts.

• Although flat accents are an existing feature,
we extended them by providing additional scal-
ing when they are not specified.

• In addition to script sizes we also have mirror
as a feature so that we can provide right to left
math typesetting. (This also relates to dropping
in characters from other fonts, like Arabic.)

• In addition to the top anchors we also have
bottom anchors in order to properly place bot-
tom accents. These are often missing, so we
need to construct them from available snippets.

• An additional extensible italic correction

makes it possible to better anchor scripts to
sloped large operators. This is combined with
keeping track of corner kerns that can be spec-
ified per character.

• Characters can have margins which makes it
possible to more precisely position accents that
would normally overflow the base character and
clash with scripts. These go in all four direc-
tions.

Standardizing OpenType math fonts

228 TUGboat, Volume 44 (2023), No. 2

• In order to be able to place the degree in a
radical more precisely (read: not run into the
shape when there is more than just a single
degree atom) we have radical offsets.

There are plenty more tuning options but some
are too obscure to mention here. All high level
constructors, like fences, radicals, accents, operators,
fractions, etc. can be tuned via optional keyword and
key/values at the macro end.

We eliminate the italic correction in math fonts,
instead adding it to the width, and using a negative
bottom right kern. If possible we also set a top and
bottom accent anchor. This happens when we load
the font. We also translate the italic correction on
large operators into anchors. As a result, the engine
can now completely ignore italic corrections in favor
of proper widths, kerns and anchors. Let us look at
a few examples.

The italic f is used a lot in mathematics and it is
also one of the most problematic characters. In TEX
Gyre Bonum Math the italic f has a narrow bounding
box; the character sticks out on both the left and
right. To the right, this is compensated by a large
amount of italic correction. This means that when
one adds sub- and superscripts, it works well. We
add italic correction to the width, and introducing
a negative corner kern at the bottom right corner,
and thus the placement of sub- and superscripts is
not altered. Look carefully at the bounding boxes
below.

𝑓 10 𝑓 10
original tweaked

Compare with Lucida Bright Math, which comes
with staircase kerns instead of italic correction. We
convert these kerns into corner kerns.

𝑓1
0 𝑓1

0
original tweaked

For characters that stick out to the left, we also
increase the width and shift the glyph to ensure that
it does not stick out on the left side. This prevents
glyphs from clashing into each other.

(𝑓) (𝑓)
original tweaked

As mentioned, for the integral, one of the most
common big operators, the limits are also placed
with help of the italic correction. When the lim-
its go below and on top, proper bottom and top
anchor points are introduced, calculated from the
italic correction. (The difference in size of the in-
tegral signs is a side effect of the font parameter
DisplayOperatorMinHeight being tweaked, as we’ll
discuss more later. OpenType fonts can come with
more than two sizes.)

∫
𝑏

𝑎
𝑓 (𝑥)𝑑𝑥 ∫

𝑏

𝑎
𝑓 (𝑥)𝑑𝑥

𝑏

∫
𝑎

𝑓 (𝑥)𝑑𝑥

original tweaked, nolimits tweaked, limits

Compare these integrals with the summation,
that usually does not have any italic correction bound
to it. This means that the new anchor points end
up in the middle of the summation symbol.

𝑛
∑
𝑘=1

𝑎𝑘
𝑛
∑
𝑘=1

𝑎𝑘
original tweaked

We also introduce some corner kerns in cases
where there were neither italic corrections nor stair-
case kerns. This is mainly done for delimiters, like
parentheses. We can have a different amount of kern-
ing for the various sizes. Often the original glyph
does not benefit from any kerning, while the variants
and extensibles do.

(1
1 + 𝑥2)

2

(1−−−−−−−−−−−−−−−−−1 + 𝑥2)
2

original tweaked

Note also the different sizes of the parentheses
in the example above. Both examples are set with
\left(and \right), but the font parameters are
chosen differently in the tweaked version. Font de-
signers should have used the opportunity to have
more granularity in sizes. Latin Modern Math has
four, many others have steps in between, but there
is a lack of consistency.

Hans Hagen, Mikael P. Sundqvist

TUGboat, Volume 44 (2023), No. 2 229

4 Converting staircase kerns

We simplify the staircase kerns, which are often some-
what sloppy and seldom complete (see figure below),
into more reliable corner kerns. It’s good enough
and looks better on the whole. We also avoid bugs
that way.

italic V upright V

5 Tweaking accents

We ignore the zero dimensions of accents, simply
assuming that one cannot know if the shape is cen-
tered or sticks out in a curious way, and therefore use
proper widths with top and bottom anchors derived
from the bounding box. We compensate for negative
llx values being abused for positioning. We check for
overflows in the engine. In case of multiple accents,
we place the first one anchored over the character,
and center the others on top of it.

̂̂̂𝑓
We mentioned in an earlier TUGboat article2

that sometimes anchor points are just wrong. We
have a tweak that resets them (to the middle) that
we use for several fonts and alphabets.

Some accents, like the hat, can benefit from
being scaled. The fonts typically provide the base
size and a few variants.

̂𝑓 + 𝑔 �̂� + 𝑔
original tweaked

The only fonts we have seen that support flat-
tened accents are Stix Two Math and Cambria Math.

2“New directions in math fonts”, 43:3,
tug.org/TUGboat/tb43-3/tb135hagen-mathchange.pdf

̂𝑎 ̂𝐴 ̂𝐶 �̂��̂��̂�
Stix Two Cambria

If you look carefully, you notice that the hats
over the capital letters are not as tall as the one
over the lowercase letter. There is a font parame-
ter FlattenedAccentBaseHeight that is supposed
to specify when this effect is supposed to kick in.
Even though other fonts do not use this feature, the
parameter is set, sometimes to strange values (if
they were to have the property). For example, n
Garamond Math, the value is 420.

We introduced a tweak that can fake the flat-
tened accents, and therefore we need to alter the
value of the font parameter to more reasonable val-
ues. We communicated to Daniel Flipo, who main-
tains several math fonts, that the parameter was not
correctly set in Erewhon math. In fact, it was set
such that the flattened accents were used for some
capital letters (C in the example below) but not for
others (A below). He quickly fixed that. The green
(gray in print) rules in the picture have the height
of FlattenedAccentBaseHeight; it did not need to
be decreased by much.

�̂� �̂� ̂𝐶 �̂� �̂� ̂𝐶
Erewhon, not fixed Erewhon, fixed

6 Getting rid of rules

We get rid of rules as pseudo-glyphs in extensibles
and bars. This also gives nicer visual integration
because flat rules do not always fit in with the rest
of the font. We also added support for this in the
few (Polish) Type 1 math fonts that we still want to
support, like Antykwa Toruńska.

√1 + 𝑥
1 − 𝑥

√
−−−−−−−−−−−−
1 + 𝑥−−−−−−−−−−−−1 − 𝑥

�����1 + 𝑥����1− 𝑥
with rule with glyph Antykwa

Here is an enlarged example of an Antykwa rule.
Latin Modern has rounded corners, here we see a
rather distinctive ending.

𝑥2 + 2𝑥 + 2�������
Standardizing OpenType math fonts

https://tug.org/TUGboat/tb43-3/tb135hagen-mathchange.pdf

230 TUGboat, Volume 44 (2023), No. 2

7 Tweaking primes

We make it no secret that we consider primes in
math fonts a mess. For some reason no one could
convince the Unicode people that a ‘prime’ is not a
‘minute’ (that is, U+2032 PRIME is also supposed to
be used as the symbol for minutes); in case you’d
like to argue that “they often look the same”, that
is also true for the Latin and Greek capital ‘A’. This
lost opportunity means that, as with traditional TEX
fonts, we need to fight a bit with placement. The
base character can or cannot be already anchored
at some superscript-like position, so that makes it
basically unusable. An alternative assumption might
be that one should just use the script size variant as
a superscript, but as we will see below, that assumes
that they sit on the baseline so that we can move
it up to the right spot. Add to that the fact that
traditional TEX has no concept of a prime, and we
need some kind of juggling with successive scripts.
This is what macro packages end up doing.

But this is not what we want. In ConTEXt MkIV
we already have special mechanisms for dealing with
primes, which include mapping successive primes
onto the multiple characters in Unicode, where we
actually have individual triple and quadruple primes
and three reverse (real) primes as well. However,
primes are now a native feature, like super- and
subscripts, as well as prescripts and indices. (All
examples here are uniformly scaled.)

Because primes are now a native feature, we
also have new font parameters PrimeShiftUp and
PrimeShiftUpCramped, similar to
SuperscriptShiftUp and
SuperscriptShiftUpCramped, which add a horizon-
tal axis where the primes are placed. There is also
a fixprimes tweak that we can use to scale and fix
the glyph itself. Below, we see how very different
the primes from different fonts look (all examples
are uniformly scaled), and then examples comparing
the original and tweaked primes.

Latin Modern st sts

Lucida ssty

Erewhon st sst

Libertinus ssty1

𝑓′(𝑥) + 𝑒𝑓′(𝑥) 𝑓′(𝑥) + 𝑒𝑓′(𝑥)

Latin Modern original tweaked

𝑓′(𝑥) + 𝑒𝑓′(𝑥) 𝑓′(𝑥) + 𝑒𝑓′(𝑥)

Lucida original tweaked

𝑓′(𝑥) + 𝑒𝑓
′(𝑥) 𝑓′(𝑥) + 𝑒𝑓

′(𝑥)

Erewhon original tweaked

𝑓 ′(𝑥) + 𝑒𝑓 ′(𝑥) 𝑓 ′(𝑥) + 𝑒𝑓
′(𝑥)

Libertinus original tweaked

8 Font parameters

We add some font parameters, ignore some existing
ones, and fix at runtime those that look to be sub-
optimal. We have no better method than looking at
examples, so parameters might be fine-tuned further
in the future. Following are examples of pdfLATEX
math, LuaLATEX math, and (as of this writing) Con-
TEXt LMTX:

Hans Hagen, Mikael P. Sundqvist

TUGboat, Volume 44 (2023), No. 2 231

h3 + h2 + h3
2 + h′

ℎ3 + ℎ2 + ℎ3
2 + ℎ′

ℎ3 + ℎ2 + ℎ32 + ℎ′

We have already mentioned that we have a few
new parameters, PrimeShiftUp and
PrimeShiftUpCramped, to position primes on their
own axis, independent of the superscripts. They are
also chosen to always be placed outside superscripts,
so the inputs $f’^2$ and $f^2’$ both result in f2′.
Authors should use parentheses in order to avoid
confusion.

Let us briefly mention the other parameters.
These are the adapted parameters for TEX Gyre
Bonum:

AccentTopShiftUp = -15

FlattenedAccentTopShiftUp = -15

AccentBaseDepth = 50

DelimiterPercent = 90

DelimiterShortfall = 400

DisplayOperatorMinHeight = 1900

SubscriptShiftDown = 201

SuperscriptShiftUp = 364

SubscriptShiftDownWithSuperscript

= "1.4*SubscriptShiftDown"

PrimeShiftUp

= "1.25*SuperscriptShiftUp"

PrimeShiftUpCramped

= "1.25*SuperscriptShiftUp"

Some of these are not in OpenType. We can set
up much more, but it depends on the font what is
needed, and also on user demands.

We have noticed that many font designers seem
to have had problems setting some of the values; for
example, DisplayOperatorMinHeight seems to be
off in many fonts.

9 Profiling

Let us end with profiling, which is only indirectly
related to the tweaking of the fonts. Indeed, font pa-
rameters control the vertical positioning of sub- and
superscripts. If not carefully set, they might force a
non-negative \lineskip where not necessary. In the
previous section we showed how these parameters
were tweaked for Bonum.

Sometimes formulas are too high (or have a too
large depth) for the line, and so a \lineskip is added
so that the lines do not clash. If the lowest part of
the top line (typically caused by the depth) and the

tallest part of the bottom line (caused by the height)
are not close to each other on the line, one might
argue that this \lineskip does not have to be added,
or at least with reduced amount. This is possible
to achieve by adding \setupalign[profile]. An
example is in figure 1.

In the figure, we enabled a helper that shows us
where the profiling feature kicks in. We also show
the lines (\showmakeup[line]). Below we show the
example without those helpers. You can judge for
yourself which one you prefer.

It is worth emphasizing that, contrary to what
one might believe at first, the profiling does not
substantially affect the compilation time. On a 300-
page math book we tried, which usually compiles in
about 10 seconds, profiling did not add more than 0.5
seconds. The same observation holds for the other
math tweaks we have mentioned: the overhead is
negligible.

10 Conclusions

All these tweaks can be overloaded per glyph if
needed; for some fonts, we indeed do this, in so-
called goodie files. The good news is that by doing
all this we present the engine with a font that is
consistent, which also means that we can more easily
control the typeset result in specific circumstances.

The reader may wonder how we ended up with
this somewhat confusing state of affairs in the font
world. Here are some possible reasons. There is
only one reference font, Cambria, and that uses its
reference word processor renderer, Word. Then came
X ETEX that as far as we know maps OpenType math
onto a traditional TEX engine, so when fonts started
coming from the TEX crowd, traditional dimensions
and parameters sort of fit in. When LuaTEX showed
up, it started from the other end: OpenType. That
works well with the reference font but less so with
that ones coming from TEX. Eventually more fonts
showed up, and it’s not clear how these got tested
because some lean towards the traditional and others
towards the reference fonts. And, all in all, these
fonts mostly seem to be rather untested in real (more
complex) math.

The more we looked into the specific properties
of OpenType math fonts and rendering, the more we
got the feeling that it was some hybrid of what TEX
does (with fonts) and ultimately desired behavior.
That works well with Cambria and a more or less
frozen approach in a word processor, but doesn’t suit
well with TEX. Bits and pieces are missing, which
could have been added from the perspective of gener-
alization and imperfections in TEX as well. Lessons
learned from decades of dealing with math in macros

Standardizing OpenType math fonts

232 TUGboat, Volume 44 (2023), No. 2

So the question is: how good an approximation to 𝜎 is 𝜎 ∗ 𝑊𝜙? But the attentive readerL__

will realize that we have already answered this question in the course of proving the sharpL__

Gårding inequality. Indeed, suppose 𝜙 ∈ 𝒮 is even and ||𝜙||2 = 1, and set 𝜙𝑎(𝑥) = 𝑎𝑛/4𝜙(𝑎1/2𝑥).L__

Then we have shown (cf. Remark (2.89)) that 𝜎 − 𝜎 ∗ 𝑊𝜙𝑎 ∈ 𝑆𝑚−(𝜌−𝛿)
𝜌,𝛿 whenever 𝜎 ∈ 𝑆𝑚

𝜌,𝛿 isL__

supported in a set where ⟨𝜉⟩𝜌+𝛿 ≈ 𝑎.L__

No profiling

So the question is: how good an approximation to 𝜎 is 𝜎 ∗ 𝑊𝜙? But the attentive readerL__

will realize that we have already answered this question in the course of proving the sharpL__

Gårding inequality. Indeed, suppose 𝜙 ∈ 𝒮 is even and ||𝜙||2 = 1, and set 𝜙𝑎(𝑥) = 𝑎𝑛/4𝜙(𝑎1/2𝑥).L__
LI:0.000

Then we have shown (cf. Remark (2.89)) that 𝜎 − 𝜎 ∗ 𝑊𝜙𝑎 ∈ 𝑆𝑚−(𝜌−𝛿)
𝜌,𝛿 whenever 𝜎 ∈ 𝑆𝑚

𝜌,𝛿 isL__
LI:0.000

supported in a set where ⟨𝜉⟩𝜌+𝛿 ≈ 𝑎.L__

Profiling

So the question is: how good an approximation to 𝜎 is 𝜎 ∗ 𝑊𝜙? But the attentive reader
will realize that we have already answered this question in the course of proving the sharp
Gårding inequality. Indeed, suppose 𝜙 ∈ 𝒮 is even and ||𝜙||2 = 1, and set 𝜙𝑎(𝑥) = 𝑎𝑛/4𝜙(𝑎1/2𝑥).
Then we have shown (cf. Remark (2.89)) that 𝜎 − 𝜎 ∗ 𝑊𝜙𝑎 ∈ 𝑆𝑚−(𝜌−𝛿)

𝜌,𝛿 whenever 𝜎 ∈ 𝑆𝑚
𝜌,𝛿 is

supported in a set where ⟨𝜉⟩𝜌+𝛿 ≈ 𝑎.
No profiling

So the question is: how good an approximation to 𝜎 is 𝜎 ∗ 𝑊𝜙? But the attentive reader
will realize that we have already answered this question in the course of proving the sharp
Gårding inequality. Indeed, suppose 𝜙 ∈ 𝒮 is even and ||𝜙||2 = 1, and set 𝜙𝑎(𝑥) = 𝑎𝑛/4𝜙(𝑎1/2𝑥).
Then we have shown (cf. Remark (2.89)) that 𝜎 − 𝜎 ∗ 𝑊𝜙𝑎 ∈ 𝑆𝑚−(𝜌−𝛿)

𝜌,𝛿 whenever 𝜎 ∈ 𝑆𝑚
𝜌,𝛿 is

supported in a set where ⟨𝜉⟩𝜌+𝛿 ≈ 𝑎.
Profiling

Figure 1: Above: comparison of standard (no profiling) and math profiling
typesetting, with guides for where profiling occurred; namely, the fourth and fifth
baselines are altered. Below: the same, without the guides.

and math fonts were not reflected in the OpenType
fonts and approach, which is of course understand-
able as OpenType math never especially aimed at
TEX. But that also means that at some point one
has to draw conclusions and make decisions—which
is what we do in ConTEXt, LuaMetaTEX and the
runtime-adapted fonts. And it gives pretty good and
reliable results.

⋄ Hans Hagen
Pragma ADE

⋄ Mikael P. Sundqvist
Department of Mathematics
Lund University

Hans Hagen, Mikael P. Sundqvist

	Introduction
	Traditional vs. OpenType math fonts
	Getting rid of italic corrections
	Converting staircase kerns
	Tweaking accents
	Getting rid of rules
	Tweaking primes
	Font parameters
	Profiling
	Conclusions

