
Plain TEX’s \ooalign

Udo Wermuth

Abstract

This article looks at a single macro defined in the
file plain.tex: \ooalign. Its definition is analyzed
and several examples for its use are presented.

1 Introduction

On page 9 of The TEXbook [1] the author, Donald E.
Knuth, makes a promise: “TEX understands about
900 control sequences as part of its built-in vocab-
ulary, and all of them are explained in this manual
somewhere.” And on the next page the number 900
is split into two parts: “In the following chapters we
shall frequently discuss ‘plain TEX’ format, which
is a set of about 600 basic control sequences that
are defined in Appendix B. These control sequences,
together with the 300 or so primitives, are usually
present when TEX begins to process a manuscript;
that is why TEX claims to know roughly 900 control
sequences when it starts.” So the plain format is
covered in the book at least by Appendix B.

It’s necessary to write “at least” in the previous
sentence since we read in Appendix B on page 343,
“When we come to macros whose usage has not
yet been explained— for example, somehow \vglue

and \beginsection never made it into Chapters 1
through 27—we shall consider them from a user’s
viewpoint; but most of the time we shall be address-
ing the issues from the standpoint of a macro de-
signer.” (Note however, in Chapter 23, page 259f., a
different, more complex \beginsection from a real-
world book design is discussed.)

Another macro of the plain format that never
made it into the numbered chapters of the book is
\ooalign. It is defined in Appendix B on page 356.
Well, there is an important difference between the
two macros \ooalign and \beginsection. The first
is definitely something for macro writers, the second
serves users who want to enter text. But the latter
is only used in a test file of Appendix B, not in The

TEXbook itself. (As mentioned above, a more com-
plex macro is shown in Chapter 23 and later in Ap-
pendix E, page 418f., Knuth explains the non-plain
macro \beginchapter that is used in the creation
of The TEXbook.) On the other hand the macro
\ooalign is used several times in the plain format.

Nevertheless it seems that the macro \ooalign

is a little bit hidden through this treatment. Like the
simple \beginsection, other authors of books that

TUGboat, Volume 44 (2023), No. 3 421

concentrate on TEX’s primitives and the plain for-
mat hardly mention the macro \ooalign. I surmise
\ooalign is seen by most people as a support macro
that Knuth uses to define an accent (\c: ¸) and the
copyright symbol (\copyright: c©) although it ap-
pears in macros for math modes too.

But I assume that most “support macros” in
the plain format are written with the ‘@’ symbol
in their names to make them private to the format.
As \ooalign doesn’t contain the ‘@’ in its name, it
might indicate that Knuth wants people other than
TEX experts to consider \ooalign a useful tool.

Contents. Section 2 shows and explains the defini-
tion of the macro \ooalign. Then we look at sim-
ple examples of its use in section 3. The constructed
symbols are meant to be entered in normal text.
Symbols that should be used in a math mode need
more complex code as section 4 shows. Section 5 in-
creases the complexity and handles a weird use case.

2 \ooalign’s definition

As the macro name implies the macro has something
to do with alignment. Here is the definition as it
appears in plain.tex:

\def\ooalign{\lineskiplimit-\maxdimen \oalign}

This definition is followed by a comment: “chars over
each other”. Okay, one of the two ‘o’s vanishes in the
replacement text to leave us with another unknown
macro of the plain format: \oalign. As we will
see in a moment, \oalign calls another unknown
macro, \ialign, so I assume it’s best to study the
whole chain of macro calls in one code block.

Note that the macro \ooalign has no parame-
ters. Of course, we expect that “characters” follow
so that the comment makes sense. The truth is that
it’s \oalign that has a parameter but for the users
of \ooalign it looks as if this macro takes an argu-
ment. (Some people call this a pseudo-parameter for
\ooalign.) This technique is used if certain param-
eter settings must be done before the argument is
digested by TEX. Here the \lineskiplimit is set.

This assignment is a bit of a surprise in the
above definition. The dimension \lineskiplimit

occurs usually in a triumvirate with the two glue pa-
rameters \baselineskip and \lineskip. Together
they control the interline glue design, i.e., the verti-
cal line spacing; see [1], p. 78f.

Interline glue. When TEX typesets text in para-
graphs it observes that the distances between ad-
jacent lines have a certain value stored in the glue
parameter \baselineskip. To get this distance TEX
looks for every pair of lines at the depth of the first

doi.org/10.47397/tb/44-3/tb138wermuth-ooalign

Plain TEX’s \ooalign

line and the height of the second. Both values are
subtracted from the \baselineskip to get the value
for the interline glue. TEX adds this glue value be-
tween the two lines to keep the baselines exactly
\baselineskip apart. (Usually this glue parameter
has only a natural width and no stretch or shrink
component. Nevertheless, TEX allows this kind of
flexibility here.)

But there is an exception. If the natural width
of the computed interline glue is smaller than the
dimension \lineskiplimit, TEX ignores the com-
puted value and inserts glue with the value of the
parameter \lineskip between the lines.

The format plain sets \baselineskip to 12 pt,
\lineskip to 1 pt, and \lineskiplimit to 0 pt. So,
in plain TEX lines are kept 1 pt apart if the natural
width of the computed interline glue becomes neg-
ative, i.e., if the lines might overprint each other.
(“Might” because the places with large depth in the
first line and large height in the second might not
be at the same position inside the lines.)

The macro chain. Let’s return to the definition of
\ooalign and describe it in detail with comments.

\def\ooalign{% ‘‘chars over each other’’

\lineskiplimit=-\maxdimen %-\maxdimen: smallest

\oalign}% dimension in TeX

From the discussion about interline glue we ex-
pect that the macro \oalign sets the two missing
parameters. The following code from plain.tex—
extended by my comments—meets our expectation.

\def\oalign#1{% #1: cell entries for \ialign

\leavevmode % in horizontal mode: do nothing;

% otherwise switch to horizontal mode

\vtop{% put the alignment into an unbreakable

% box with height of the 1st row

\baselineskip=0pt % switch off \baselineskip

% and set a default value to \lineskip:

\lineskip=.25ex % a quarter of the x-height

\ialign{##\crcr % preamble of a one-column

#1\crcr}}}% initialized alignment

Before we discuss the settings of the three param-
eters for the interline glue, let’s look at the macro
that is called at the end of \oalign.

\def\ialign{% initialized horizontal alignment

\everycr={}\tabskip=0pt \halign}

The primitive \halign reacts to two TEX param-
eters with their current settings: First, the token
list \everycr is applied directly after the preamble
and at every \cr (or non-redundant \crcr); see [1],
p. 275. Second, TEX applies the current value of the
\tabskip glue from outside of an \halign to the left
of the alignment; see [1], p. 238. So it makes sense
to first reset both values to control the appearance
of the horizontal alignment.

422 TUGboat, Volume 44 (2023), No. 3

Now we can also describe the pseudo-parameter
of \ooalign: It consists of a sequence of rows for a
horizontal alignment. Each row entry except the last
must end with \cr (or \crcr).

Why \lineskip? If you paid attention to the dis-
cussion about interline glue then you might wonder
why \oalign sets \lineskip to a nonzero value.
The macro \ooalign assigns the smallest acceptable
dimension of TEX to \lineskiplimit, so no compu-
tation can give a smaller value: TEX never discards
its computed value for the interline glue and thus it
never applies the value of \lineskip.

Of course, there is a reason that \lineskip is
set by \oalign. The macro \ooalign has a sibling
\o@lign that’s private to the plain format.

\def\o@lign{\lineskiplimit=0pt \oalign}

Now we can see why \lineskiplimit is set out-
side of \oalign. In \o@lign, \lineskip is always
applied if the interline glue is negative; and this is al-
ways the case, as \baselineskip is 0 pt. Thus, every
nonzero depth and height of the pair of lines makes
TEX insert glue with a natural height of 0.25 ex.

The macro \o@lign is private to plain as it
has fewer use cases than \ooalign. The macro only
occurs in the definition of two accents. As with the
above-mentioned cedilla accent, where \ooalign is
used, these accents are set below the baseline.

So, what does \ooalign do? It takes material
provided as cell entries for an alignment and TEX
typesets these entries as one column with baselines
that are 0 pt apart. Or in other words: TEX prints
the second row on top of the first, then the third on
top of the combination of the first and second, etc.
As the entries are characters, we get “chars over each
other”. The material in the first row determines the
height of the result, that in the last row its depth.

But recall that TEX determines in a horizontal
alignment the widest cell entry in all the rows of a
column and uses this width for the other rows in
this column too. Users of \ooalign must make sure
that TEX finds enough glue in the cell entries to
accomplish this.

Next, \ooalign sets a lot of parameters, some-
times to unusual values. For example, we certainly
want to return to the current interline glue parame-
ters as soon as \ooalign finishes its job. Thus, users
of the macro should call it only inside a group.

3 Simple examples

The Introduction mentions that \ooalign is used
to create the copyright symbol. So, for our first ex-
ample, let’s see how to generate this symbol. It’s

Udo Wermuth

based on two characters of Computer Modern Ro-
man. First, a circle is needed, called \Orb: ©. Sec-
ond, we need the letter ‘c’ from the default font
cmr10. (I present the code in my style.)

\def\copyright{% typeset a ‘c’ inside a circle

{\ooalign{% call \ooalign inside a group

\hfil % start 1st row; center its contents

\raise0.07ex\hbox{c}% output ‘c’ (raised)

\hfil\crcr % end the first row

\Orb\crcr}}}% the 2nd row with the circle

The \crcr after \Orb is not required as the code of
\oalign shows. But it doesn’t hurt to add it and to
make the code for the symbol easier to understand.

The value 0.07 ex that occurs in the code of the
macro might have been found by trial and error or
by insight into the definitions of the involved char-
acters. So either you have to experiment to find the
correct value or look up the definitions of the in-
volved characters in [2] and do some computations.

We could have coded the symbol a little bit dif-
ferent but with the same output:

\def\Copyright{% typeset a ‘c’ inside a circle

{\ooalign{% call \ooalign inside a group

\Orb\crcr % the 1st row with the circle

\hfil % start 2nd row; center its contents

\raise0.07ex\hbox{c}% output ‘c’ (raised)

\hfil\crcr}}}% % end the second row

Here is a direct comparison: c© ©c entered as
\copyright and \Copyright. But remember what
was stated in section 2: The symbols aren’t identi-
cal. Let’s add a superscript and a subscript to both
symbols: a) c©∗ ©c ∗ b) c©+ ©c +. Thus the sequence
of the rows is important if the created symbol is later
used in certain situations.

Many symbols are based on a circle and an-
other character. Let’s create some textile care labels
as defined by the organization GINETEX. We want
to write a macro that produces the symbol P© (dry
clean with tetrachloroethylene (PCE) only): A sans-
serif font is combined with the circle called \Orb.

\font\DCfont=cmss8 % sans-serif font for the ‘P’

\def\PCE{{% open a group for \ooalign

\ooalign{% horizontal alignment with two rows

\hidewidth\hbox{\DCfont\kern0.06em P}%

\hidewidth\cr % 1st row, centered contents

\raise0.1ex\hbox{\Orb}\cr % 2nd row: a circle

}}}% end \ooalign, the group, and the macro

As mentioned above, the symbol is created us-
ing row entries of an alignment. Hence the usual
techniques known from horizontal alignments can be
used. Here we suppress the width of the letter with
\hidewidth and apply \cr instead of \crcr.

And we can apply other aspects from horizontal
alignments too. The above symbol has a variant if

TUGboat, Volume 44 (2023), No. 3 423

the dry cleaning must be done in a more “gentle”
way. This is indicated by a horizontal rule below the
circle: P©. We can realize this rule with a \noalign.

\def\gentlePCE{{% open a group for \ooalign

\ooalign{% the rows are known from \PCE

\hidewidth\hbox{\DCfont\kern0.06em P}%

\hidewidth\cr

\raise0.1ex\hbox{\Orb}\cr

\noalign{\vskip1pt \hrule}}}}% add a rule

Using symbols from math fonts. Of course the
cell entries can also contain inline math. But there
is a new aspect to consider if the defined macros
should work in all situations.

In [6], p. 444, the following macro is shown to
print the symbol for acid-free paper.

\def\goodpaper{{%

\ooalign{\hfil

\raise.25ex\hbox{%

$\scriptstyle\mathchar"231$}%

\hfil\crcr

\mathhexbox20D}}}

As \mathchar"231 stands for the symbol ‘∞’ and
\mathhexbox20D for the \Orb, i.e., ‘©’, the result
is: ∞©. As stated in the article, the macro works well
at the site of the author.

But the macro isn’t as universal as it could be;
it makes an assumption that a certain parameter
has more or less its default value. TEX adds space
around inline math as specified by the value of the
dimension \mathsurround; [1], p. 162. The default
value in plain is 0 pt. But at a site that changes
this default value, say, setting \mathsurround=2pt,
the above definition gives a distorted symbol: ∞© .

The macros that define \ooalign assign special
values to a lot of parameters and we use therefore
a group when \ooalign is called. Thus, it’s easy to
reset inside this group one more parameter to avoid
the described problem. Let’s set \mathsurround to
0 pt if inline math is used in the \ooalign. (Note,
\scriptspace should be set to 0 pt too if you use
super- or subscripts in the math.)

All the above examples are made from two sym-
bols but that isn’t a fixed limit. For example, to
express that dry cleaning with chemicals must be
avoided, the symbol ‘><© ’ was designed. This time
three characters are involved as the cross symbol
consists of the less-than and greater-than symbols.

\def\NOTchemical{{\mathsurround=0pt % init math

\ooalign{\hidewidth % 1st row with two symbols

\raise0.1ex\hbox{$>\mkern-3mu<$}%

\hidewidth\cr % 1st row is centered

\raise0.1ex\hbox{% same \raise as in \PCE

\kern2pt\Orb\kern2pt}\cr}}}% 2nd row: circle

Plain TEX’s \ooalign

Note that inside the math mode I work with \mkern

instead of \kern.

Up to now all examples were constructed with
two row entries. But of course, this isn’t a limit ei-
ther. Any number of rows can be used. Let’s look at
an example with inline math and three rows.

\def\frowny{{% a group is required for \ooalign

\mathsurround=0pt % required with inline math

\ooalign{\hidewidth \raise.3ex\hbox{% the eyes

$\cdot\mkern 2mu\cdot$}\hidewidth\cr

\hidewidth \lower.2ex\hbox{% the mouth

$\scriptscriptstyle \frown$}\hidewidth\cr

\Orb\cr}}}% the head

The above code typesets this symbol: · ·
⌢©. It

shouldn’t be difficult to create the symbol ‘ · ·⌣©’ if
you prefer this one.

4 Complex examples

The symbols that we defined in the previous sec-
tion are designed to be entered in horizontal mode,
i.e., inside a paragraph. But \ooalign can also be
used to create symbols that occur in math mode. We
need to be more careful, as such a symbol must be
allowed to appear in a displayed equation, in inline
math inside a paragraph, or as a super- or subscript
to another symbol. In other words we must code
the symbol in a way that TEX scales its size for the
different use cases.

The Computer Modern math fonts provide the
symbol ‘∈’ through the control word \in. It repre-
sents a relation between two entities like the equal
sign. Mathematicians write this relation to express
the phrase “is a member of”. For example, it is used
to express that a number is a member of a set of
numbers: 8 ∈ {0, 2, 4, 6, 8}. To state that a num-
ber is not in this set the symbol ‘∈’ is crossed out:
7 /∈ {0, 2, 4, 6, 8}.

No Computer Modern math font contains this
crossed-out symbol. Plain TEX names it “\notin”;
a macro builds it from a slash, i.e., ‘/’, and the sym-
bol ‘∈’. We look at this macro in a moment but first
let’s see how we would define this macro. I name
it \NOTin as I don’t want to replace the macro of
plain.tex.

\def\crossedoutin{% print ‘/’ over \in in math

{\mathsurround=0pt % a group, no \mathsurround

\ooalign{$\hfil\mkern 1mu/\hfil$\crcr% the ‘/’

\in\crcr}}}% close group and end macro

\let\NOTin=\crossedoutin

The indirect approach to define \NOTin will become
clear in a moment.

First, let’s perform a test of the new symbol.
In the following I entered \NOTin every time TEX

424 TUGboat, Volume 44 (2023), No. 3

typesets /∈: “8 ∈ {0, 2, 4, 6, 8} and 7/∈{0, 2, 4, 6, 8}
and (a little bit silly) as a subscript

X8∈{0,2,4,6,8} and X
7/∈{0,2,4,6,8}

”

It is obvious that (a) the spacing for the new
symbol and (b) the size in the subscript aren’t good.
Look closely and you see that the axis of the new
symbol in the subscript isn’t perfect.

TEX doesn’t know that the new symbol is a re-
lation. We must inform TEX about this fact. The
primitive \mathrel assigns the new symbol to the
class that represents relations ([1], p. 155). This fixes
problem (a):

\def\NOTin{\mathrel\crossedoutin}

“8 ∈ {0, 2, 4, 6, 8} and 7 /∈ {0, 2, 4, 6, 8} and (a little
bit silly) as a subscript

X8∈{0,2,4,6,8} and X
7/∈{0,2,4,6,8}

”

Mathematics: classes and styles. TEX assigns
to every math character one of eight classes. “Re-
lation” is one of these classes. The others are: or-
dinary, large operator, binary operation, opening,
closing, punctuation, and variable family; see [1],
p. 154. Any symbol can be assigned to one of these
classes (except the last): Precede the symbol by one
of these primitives \mathrel, \mathord, \mathop,
\mathbin, \mathopen, \mathclose, or \mathpunct,
respectively. The class of an object determines how
TEX treats it in certain situations. For example, TEX
looks at the class to determine the space around the
object.

In math mode TEX knows different styles. We
all know that there is a difference between inline
math in a paragraph—started and ended with a
single $—and the display math mode that’s started
and ended with two dollar signs. TEX knows four
styles when it typesets mathematics ([1], p. 141):
(a) display style for material in display math mode,
(b) text style for inline math, (c) script style for
super- and subscripts in display or text style, and
(d) scriptscript style for super- and subscripts of
super- or subscripts. These four styles have also a
cramped version, so there are eight styles in all.

TEX decides when to use the cramped versions
so we don’t need to be worried about them. But
the original styles must be addressed if we want
to create a symbol that TEX can use in all situa-
tions. TEX provides us with primitives that select
one of the four styles: \displaystyle, \textstyle,
\scriptstyle, and \scriptscriptstyle. The last
two were already used in the code for \goodpaper

and \frowny.
We don’t have to use these primitives directly

to code four different symbols. The plain format

Udo Wermuth

helps us as it provides the macro \mathpalette ([1],
p. 151). It offers TEX the symbol in the four styles.

The macro receives two parameters. The first is
the name of the symbol that should be processed.
\mathpalette requires that the macro for the sym-
bol accepts at least one argument. This argument
is supplied by \mathpalette and is the primitive
that switches to one of the four styles available in
math modes. For example, the argument might be
\displaystyle.

The second argument of \mathpalette adds
some flexibility to the macro of the new symbol: The
argument is passed on to the macro of the symbol,
but has no special meaning for \mathpalette.

Combine \mathpalette and \ooalign. To apply
\mathpalette in \NOTin we must change the macro
\crossedoutin as it now gets an argument. In our
example there is no need for an additional argument
to \crossedoutin, so we will use {} in the call of
\NOTin. But, please, don’t be confused: This empty
group isn’t the first argument to \crossedoutin,
it’s an argument of \mathpalette. In a second step,
\mathpalette takes this empty group and offers it
to the macro found as its first argument if this macro
asks for two arguments.

\def\crossedoutin#1{% #1: a math style

{\mathsurround=0pt % a group, no \mathsurround

\ooalign{% build two rows and use the style #1

$#1\hfil\mkern 1mu/\hfil$\crcr % the ‘/’

$#1\in$\crcr}}}% close group and end macro

\def\NOTin{% applicable in all math styles

\mathrel{\mathpalette\crossedoutin{}}}

This code fixes problem (b). Here is our test input:
“8 ∈ {0, 2, 4, 6, 8} and 7 /∈ {0, 2, 4, 6, 8} and (a little
bit silly) as a subscript

X8∈{0,2,4,6,8} and X7/∈{0,2,4,6,8}”

We no longer need a group for \ooalign (and
\mathsurround) as the construction is later placed
in a group for \mathrel. But it doesn’t hurt to have
this group.

It’s time now to look at plain.tex again and
see how Knuth implemented the macro \notin. The
macro \m@th sets \mathsurround to 0 pt.

\def\m@th{\mathsurround\z@}

\def\c@ncel#1#2{\m@th

\ooalign{$\hfil#1\mkern1mu/\hfil$\crcr$#1#2$}}

\def\notin{\mathrel{\mathpalette\c@ncel\in}}

We find a more general macro, \c@ncel, that prints
the slash over its second argument. Thus it can be
used in more constructions than just for the symbol
\in. Which symbol gets canceled is the second argu-
ment of \mathpalette. Otherwise the construction
is very similar to our solution.

TUGboat, Volume 44 (2023), No. 3 425

Create two new binary operators. As the last
example in this section, let’s consider creating two
new binary operators: ⊓⊔∗ and ⊓⊔⋆, named with con-
trol words \bast and \bstar, respectively. As we
need more than one symbol, we apply the technique
that was used in the macro \notin with a second
argument for \mathpalette.

The symbols \ast (∗) and \star (⋆) can be
used for the inner symbol. For the square, let’s check
the font tables in Appendix F of [1]. But none is
there. Either we now check font tables of other fonts,
for example, the AMS symbol font, or we can con-
struct a square: Use a combination of \sqcap and
\sqcup.

\def\bbox#1#2{% #1: a math style;

% #2: a symbol to be placed inside a square

\mathsurround=0pt % initialize for inline math

\ooalign{% with three rows; two for the square

$#1\sqcap$\cr % three sides of the square

$#1\sqcup$\cr % and its fourth side

\noalign{\vskip-0.109ex}

% center the symbol and cancel its width

$#1\hidewidth#2\hidewidth$\cr}}

\def\bast{\mathbin{\mathpalette\bbox\ast}}

\def\bstar{\mathbin{\mathpalette\bbox\star}}

Now we can type x ⊓⊔∗ y and X ⊓⊔⋆ Y as well as
Zx⊓⊔∗y. More symbols of this kind are possible; for
example, \bdot and \bcirc: x ⊓⊔· y 6= x ⊓⊔◦ y.

\def\bdot{\mathbin{\mathpalette\bbox\cdot}}

\def\bcirc{\mathbin{\mathpalette\bbox\circ}}

Note, in the definition of \bbox the extra group
for \mathsurround is omitted as we have a group for
\mathbin. Moreover, \cr is used instead of \crcr;
it doesn’t make a difference.

5 An experiment

I presume that every reader will agree that TEX is a
complex system. And in Knuth’s words ([3], p. 661):
“Any complex system can be improved; therefore
the goal of absolute perfection and optimality is
unattainable.” Along with the errors that he has
made and fixed during the lifetime of TEX, he also
lists some aspects of TEX that can be improved;
some of them he calls “design flaws” in [3], p. 660.

Here is the text of the first design flaw from
[3]: “Additional parameters in symbol fonts could
govern the minimum distance between ruled lines
in fractions, \sqrt, \overline, and \underline; at
present this minimum distance depends only on the
thickness of the line.” (The first statement under
the heading “Design errors that are too late to fix”
in [5] is very similar.)

What does that mean? Let’s look at the quo-
tient $1\above x pt 2$ with x going from 0.4 to 8

Plain TEX’s \ooalign

in steps of 0.4. In \displaystyle we get:

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2
We see a less drastic effect in \textstyle:

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

The analog sequences created using \scriptstyle

and \scriptscriptstyle are quite similar to the
sequence for \textstyle.

Quotients up to x = 1.6 seem to look accept-
able, so a writer of a textbook on elementary math-
ematics can choose from clearly distinct line thick-
nesses ([1], p. 143). Nevertheless, the situation is dis-
appointing. Can the macro \ooalign help?

This is the idea: We can set the fraction with
a small size for the line thickness and then we over-
print this thin line with a line of the desired thick-
ness. We assume that (a) the fraction is enclosed by
\lA and \rA instead of braces and (b) \mA is put
after the line thickness. Macro \lA splits the input
and uses the macro \mathpalette, whose second ar-
gument collects the input. But this input must be
split again to be usable for the main macro \Aalign.

\dimendef\Adim=0 % the new line thickness, local

\def\lA#1\above#2\mA#3\rA{% read fraction

\mathord{\mathpalette\Aargs{{#1}{#2}{#3}}}}

\def\Aargs#1#2{\Aalign#1#2\end}% #1: math style

\def\Aalign#1#2#3#4\end{% #1: math style;

% #2: numerator; #3: dimen<=8pt; #4: denominator

% guess an acceptable value for \above’s dimen

% based on the integer part and the 1st decimal

% of the given dimen (compared to unit ‘‘pt’’)

{\Adim=\ifx#1\displaystyle

\ifdim #3<1.5pt #3\relax

\else\ifdim #3<2.5pt 1.5pt

\else\ifdim #3<5pt 1.75pt

\else 2pt \fi\fi\fi

\else % the other styles need more cases

\ifdim #3<1.5pt #3\relax

\else\ifdim #3<2pt 1.5pt

\else\ifdim #3<3pt 1.75pt

\else\ifdim #3<4pt 2pt

\else\ifdim #3<5pt 2.25pt

\else\ifdim #3<6pt 2.5pt

\else\ifdim #3<7pt 3pt

\else 3.5pt \fi\fi\fi\fi\fi\fi\fi \fi%\ifx

\ooalign{% build fraction thrice: 1) output

% fraction, 2) overprint line, 3) fix depth

$#1{#2\above\Adim #4}$\cr % use a thin line

$#1{\above#3}$\cr

$#1{\above\Adim}$}}}

426 TUGboat, Volume 44 (2023), No. 3

Next, let’s look at the two figures from above
using \Aalign. This time I entered the quotients as
\lA 1 \above 0.4pt\mA 2\rA, etc.

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2
Here is the sequence in \textstyle:

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

And here is another comparison between TEX’s
default output and the one from \Aalign. The code

$${\displaystyle{y_q \above1mm x^2}\above2mm

\displaystyle{Y_q \above1mm X^2}} \qquad

\lA{\displaystyle\lA y_q \above1mm\mA x^2\rA}

\above2mm\mA

{\displaystyle\lA Y_q \above1mm\mA X^2\rA}

\rA$$

outputs yq

x2

Yq

X2

yq

x2

Yq

X2

Clearly, there is an improvement. Nevertheless, the
values for \Adim should be studied in more depth
if you want to use this trick. The excessive use of
\mathpalette—the \phantom macro ([1], p. 360)
applies it too—makes it an expensive procedure.

References

[1] Donald E. Knuth, The TEXbook, Volume A of
Computers & Typesetting, Boston, Massachusetts:
Addison-Wesley, 1984.

[2] Donald E. Knuth, Computer Modern Typefaces,
Volume E of Computers & Typesetting, Boston,
Massachusetts: Addison-Wesley, 1986.

[3] Donald E. Knuth, “The Final Errors of TEX”,
Chapter 34 of [4], 655–662, written August 1998.

[4] Donald E. Knuth, Digital Typography, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 78, 1999.

[5] Donald E. Knuth, “tex82.bug”, file in the
distributed errata for Computers & Typesetting.
ctan.org/tex-archive/systems/knuth/dist/

errata/tex82.bug

[6] Pierre A. MacKay, “Recycled METAFONT”,
TUGboat 15:4 (1994), 444–446.
tug.org/TUGboat/tb15-4/tb45mack.pdf

⋄ Udo Wermuth
Dietzenbach, Germany
u dot wermuth (at) icloud dot com

Udo Wermuth

