
preliminary draft, July 6, 2016 15:33 preliminary draft, July 6, 2016 15:33

TUGboat, Volume 0 (9999), No. 0 preliminary draft, July 6, 2016 15:33 ? 1

MFCONFIG : METAFONT plug-in module for
Freetype rasterizer

Jaeyoung Choi, Sungmin Kim, Hojin Lee and
Geunho Jeong

Abstract

One of the advantages of METAFONT is its ability to
show a variety of font styles by changing of the val-
ues of the parameters that represent the font char-
acteristics. This advantage can be applied to not
only simple Roman-alphabet characters, but also to
complicated CJK (Chinese-Japanese-Korean) char-
acters. Second, the font families like bold, italic, and
bold-italic do not need to be created for METAFONT,
because it can automatically generate a variety of
styled fonts through changing the parameter values.
Therefore, METAFONT can reduce the development
time and cost for the production of a font family. It
is not possible, however, to directly use METAFONT

in general font engines, as it must be changed to
the outline-font format if it is to be used in the cur-
rent PC environment. In this paper, the MFCONFIG

module that enables a direct usage of METAFONT on
Linux is proposed; although, it must be installed
with the popular rasterizer Freetype. MFCONFIG is
a plug-in module for the FONTCONFIG library en-
gine, which makes the Freetype engine compatible
with the current digital font types of bitmap and
outline; furthermore, with the use of different pa-
rameters, the proposed module supports a variety
of fonts, generated from METAFONT with different
parameters.

1 Introduction

Text is an effective way to communicate and record
information. With the growing use of smart devices,
digital fonts are more commonly used than analog
fonts. Although many styles of digital fonts have
been created, they still do not meet the require-
ments of all users, and users cannot change digital-
font styles freely[1]; for instance, if a user wants to
use a thinner outline font, either he/she has to find
a thinner styled font, or an in-application function
to change the font thickness. As several different
features of font style are needed, though, a simple
searching or the changing of the font style of an ex-
isting font is not typically easy. A perfect applica-
tion for the satisfaction of users’ diversified require-
ments regarding font styles does not exist. Also,
it is impossible to provide all of the styled fonts in
accordance with users’ preferences.

Currently, popular digital fonts of bitmap or
outline have a limit to change font style[2]. However,

METAFONT is a structured font that allows users to
change the font style freely. METAFONT, a TEX font
system, had been introduced by D. E. Knuth[3]. It
has functions for drawing characters and parameters
to determine the font styles. When the user changes
the parameters, the font style is changed automat-
ically. Therefore, a variety of styled fonts can be
generated from one METAFONT font. Figure 1 shows
a variety of styled fonts are created by the chang-
ing of the thickness, slant, and a combination of two
thickness and slant styles for the alphabet “A” and
the Chinese character “ ” is shown. If other fea-
tures such as serif and pen are applied together, a
variety of styled fonts can be more generated.

Most users, however, are unable to use META-

FONT on their PCs because the current font engines
do not support METAFONT. METAFONT is expressed
as program code, so it is different from the general
digital-font types of bitmap and outline. If a user
wants to use a specific METAFONT in general font en-
gines such as Freetype, then he/she needs to convert
the METAFONT font into the corresponding outline
font format.

In the case of Roman characters, the design
of only several hundreds of characters is required,
and their shapes are simpler than those of CJK
(Chinese-Japanese-Korean) characters. In the mid-
1980s, when METAFONT was introduced, the PC was
not fast enough to enact a real-time conversion of
the METAFONT fonts into the corresponding bitmap
or outline fonts. Moreover, outline fonts have been

Figure 1: METAFONT style variation



preliminary draft, July 6, 2016 15:33 preliminary draft, July 6, 2016 15:33

? 2 preliminary draft, July 6, 2016 15:33 TUGboat, Volume 0 (9999), No. 0

more commonly used, rather than METAFONT, up
until the present time.

The current PC, however, ensures good perfor-
mance regarding the real-time execution of META-

FONT. If METAFONT could be used directly in a PC,
then users could easily make and use a variety of
styled fonts by themselves. As previously we viewed,
one METAFONT font can basically be represented by
a variety of styled fonts by changing of the style
parameter values. Therefore, METAFONT can save
great amounts of time and repeated effort in terms
of font design to make font families of plain, italic,
bold, and italic-bold fonts. In particular, in the case
of CJK-character usage, METAFONT could represent
an effective way to make and display a variety of
font style. Because, compared to the alphabet, CJK
characters are very complicated in shape and they
are expressed by combinations of radicals.

In this paper, a METAFONT module that enables
a direct METAFONT usage on Linux is proposed. It is
possible to plug this module into FONTCONFIG for
providing digital font information to the FreeType
engine. If the MFCONFIG module is used, the con-
version of a METAFONT into its corresponding outline
font is unnecessary. It is very simple to change font
styles by applying new parameter values. Also, this
module can interact with most of the existing FONT-

CONFIG functions without the modifying itself or the
Freetype rasterizer. The MFCONFIG module there-
fore has good usability and compatibility regarding
the support of METAFONT in the Freetype engine.

2 Research for font system

FONTCONFIG[4] provides an extended font config-
uration to the Freetype rasterizer, and the Xft(X-
FreeType interface library)[5] had been developed to
provide interfaces between applications and Freety-
pe. These font libraries are able to collect fonts’ in-
formation on the current PC system such as fonts’
path, fonts’ style information, and extra meta infor-
mation, and so on. Figure 2 shows a font-output
sequence that is required from the applications on
the X Window system in Linux. After an application
sends a font request according to name and style to
the Xft library, it also delivers the request informa-
tion to FONTCONFIG. FONTCONFIG uses its inter-
nal commands to check the following conditions: (1)
Whether the requested font is installed, (2) whether
the style of the user’s request has been applied to the
stored font, and (3) whether the requested font has
already been stored with the printing format in the
cache. (4) If the requested font is not stored in the
cache, it needs to be converted into the requested
printing format and stored in the cache, and (5) the

requested font in the cache is selected and then de-
livered to Freetype. Lastly, the requested font is
printed with the font styles.

FONTCONFIG is a library for Freetype, and it
is capable of supporting general digital-font formats
that can also be processed in Freetype. The archi-
tecture of FONTCONFIG is shown in Figure 2. It can
support TrueType, OpenType, Type1, CFF, PFR,
and DBF, but it does not yet support METAFONT.
For the direct support of METAFONT in FONTCON-

FIG, it might be necessary to change the internal
codes of FONTCONFIG. For instance, the changing of
the overall processes in FONTCONFIG from fc-scan”
(for font searching) to fc-pattern (for the matching of the

styled font pattern). It is not a simple work, however.
The Xft library interface exists between an applica-
tion and FONTCONFIG, and it is for the providing
font information such as font name and font size. It
is not a good approach to modify Xft support META-

FONT. It might reduce Xft’s performance.

Figure 2: Architectures of fontconfig

VFlib[6][7] is a font driver system for the sup-
porting variety of font types. The system supports
virtual fonts like BDF, PCF, and TrueType, as sho-
wn in Figure 3. It provides database including gen-
eral fonts’ type information, and it also provides a
useful API for the supporting variety of font types.
VFlib includes separate modules for each font type,
so for the support of METAFONT, a new module can
be added to it. But VFlib is heavy because it con-
sists of many different kinds of font drivers and an
information dataset of default font information. In
addition, the VFlib interface is required if an appli-
cation wants to use the VFlib library. Therefore, if
a METAFONT module is added to VFlib, additional
functions must be implemented for every relevant



preliminary draft, July 6, 2016 15:33 preliminary draft, July 6, 2016 15:33

TUGboat, Volume 0 (9999), No. 0 preliminary draft, July 6, 2016 15:33 ? 3

Figure 3: Architectures of VFlib

Figure 4: Three layers of MFCONFIG module

application. So, VFlib is not suitable to support for
METAFONT.

The proposed MFCONFIG module in this paper
combines the following two features: (1) The pro-
cess for the printing of digital fonts in FONTCON-

FIG, and (2) the font driver architecture of VFlib.
The module can process METAFONT independently,
and it can be easily installed or removed since it is
implemented as a plug-in module. Also, the steps
that are used for its implementation are similar to
FONTCONFIG’s inner commands, so METAFONT can
be used with the existing digital font formats.

3 Implementation of MFCONFIG module

As shown in Figure 4, the MFCONFIG module con-
sists of the following three layers: Communication
Layer, Management Layer, and Conversion Layer.
The Communication Layer provides an interface be-
tween FONTCONFIG and MFCONFIG. The Manage-
ment Layer checks whether the requested METAFONT

is ready in the cache. If not, it sends a request mes-
sage to the Conversion Layer to convert the META-

FONT. The Conversion Layer makes a new outline

font file by using the requested METAFONT and the
customized style values. The resulting outline font
is stored in the cache.

As shown in Figure 5, MFCONFIG can be plug-
ged into FONTCONFIG. First of all, an application
requests a font from the Xft library (step 1). Next,
FONTCONFIG sends the font information and the
values of the style parameters to MFCONFIG through
the interface of the Communication Layer (step 2).
This interface checks if the requested font is a META-

FONT font or not.
In the case of METAFONT, mf-query analyzes the

requested information, and mf-match tries to find
this METAFONT from mf-list. If the information does
not exist in mf-list, the requested METAFONT font is
not installed. In this case, mf-query returns a not
found flag to FONTCONFIG (step 3). Otherwise, if
METAFONT is installed and is already stored in the
cache, mf-query returns a found flag to FONTCON-

FIG (step 3).
Sometimes, the requested METAFONT font is in-

stalled, but the corresponding outline font may not
be stored in the cache memory yet. In this case, mf-
converter in the Conversion Layer needs to convert
the METAFONT font into the corresponding outline
font (step 2-a). In this step, the METAFONT font and
the styled parameter values from the application are
required for the conversion. After the conversion,
the outline font is stored in the cache (step 2-b),
and mf-query sends the found flag to FONTCONFIG

(step 3).
After step 3, the remaining steps are the default

steps of FONTCONFIG. The font information is sent
to the internal programs of FONTCONFIG (step 4)
that try to find the corresponding outline font in
the cache (step 5); then, this outline font is sent
to the Freetype rasterizer (step 6). If MFCONFIG

returns the not found flag, then FONTCONFIG uses
a default font file. Lastly, the Freetype engine prints
the outline font that is made from the requested
METAFONT with the styled parameter values.

The details of the three layers in MFCONFIG are
presented below. The Communication Layer that
is an interface between FONTCONFIG and MFCON-

FIG is the starting point of the MFCONFIG module.
Therefore, Freetype engine receives the font infor-
mation from FONTCONFIG as like previously. The
main functions of the interface are as follows: (1)
The delivery of the requested METAFONT informa-
tion to the Management Layer, (2) the returning of
the results to FONTCONFIG, and (3) the storage of
the outline-font file from mf-converter in the cache
memory.



preliminary draft, July 6, 2016 15:33 preliminary draft, July 6, 2016 15:33

? 4 preliminary draft, July 6, 2016 15:33 TUGboat, Volume 0 (9999), No. 0

Figure 5: MFCONFIG architecture linked fontconfig

The major programs of the MFCONFIG module
are operated in the Management Layer. This layer
is in charge of searching and managing. Searching
is an independent function of finding all of the in-
stalled METAFONT fonts, and the storing the infor-
mation in a list beforehand. This list is used for
checking whether a specific font is installed or not,
and for fetching its information quickly. The search-
ing is implemented with mf-scan and mf-list that, as
shown in Figure 6, work similarly to fc-scan and fc-
list in FONTCONFIG, respectively.

Figure 6: Management layer referenced fontconfig

Management is a core process of the MFCONFIG

module that is responsible for the following actions:
(1) Checking if the requested METAFONT font is pre-
pared in the list, (2) checking if the corresponding
outline font is stored with the requested style that
is applied to it in the cache memory, and (3) if the
outline font is not stored, check whether it needs
the conversion of the METAFONT font into the cor-
responding outline font. If the outline font has al-

ready been prepared in the cache, then a notification
is sent directly from MFCONFIG toFONTCONFIG in
order to use it. FONTCONFIG sends the outline font
that is in the cache to the Freetype engine. If the
font is not stored in the cache, then the Conversion
Layer converts the METAFONT font into the corre-
sponding outline font by applying the style param-
eters, as shown in Figure 7. The resulting outline
font is then stored in the cache, and a notification
from the Management Layer through the Commu-
nication Layer commands FONTCONFIG to use the
font.

Figure 7: A process of Conversion layer

The work of the MFCONFIG module is perfectly
compatible with the basic FONTCONFIG, and it can
append new functions to support of METAFONT. Thi-
s module works for the management of METAFONT

fonts and convert them to the corresponding out-
line fonts in real-time. When a different style of
METAFONT font is requested, MFCONFIG can display
the resulting font on the screen very conveniently by
simply applying the style values to the METAFONT

fonts. Therefore MFCONFIG has a good usability for
METAFONT. In addition, it is not necessary to gen-
erate the font-family sets of plain, bold, italic, and
italic-bold in advance with respect to MFCONFIG,



preliminary draft, July 6, 2016 15:33 preliminary draft, July 6, 2016 15:33

TUGboat, Volume 0 (9999), No. 0 preliminary draft, July 6, 2016 15:33 ? 5

because a variety of font styles can be generated
easily by applying the style values.

Table 1: Print out 4 files of ‘FreeSerif’ font family

Table 2: Various style fonts using ‘Computer Modern’

typed METAFONT with changing style variable

Table 3: Average time for printing out 2 different
fonts types (millisecond)

4 Examine MFCONFIG module

For the performance of the experiments of this stud
-y, an application for the use of the X Window sys-
tem in Linux was developed, and the display of a
text file was attempted with the use of a variety
of font files. In addition, the TrueType font family
named “FreeSerif” is used along with the four font
styles (normal, bold, italic, and bold+italic) and a
METAFONT font named “Computer Modern” were used.
The “FreeSerif” font family consists of the following
four files: FreeSerif.ttf, FreeSerifItalic.ttf, FreeSerifBod.ttf,

and FreeSerifBoldItalic.ttf. Similarly, the Computer Mod-

ern font was examined along with the four styles
normal, thickness, italic, and thickness+italic. The

sample text comprises over 2,000 words and over
8,800 characters, including the space characters. For
the performance analysis regarding the Freetype ras-
terizer, the time between the requesting of a font
with styles from an application and the successful
display of on-screen text were measured and com-
pared.

Table 1 shows the “FreeSerif” font family with
the four different styles, and Table 2 shows 12 styles
that were generated for the “Computer Modern” font of
METAFONT. All of these styles were made from one
original prototype of the METAFONT font by simple
changing of the style parameters. Therefore, the
METAFONT font has good capability of generating
various font styles with the style values.

For the printing out of a text file on the ap-
plication, four of the “FreeSerif” files from Table 1
and Style 1 of “Computer Modern” from Table 2 were
used. For Style 1 from Table 2, the four parameter
values are hair, stem, curve, and slant. The three
parameters of hair, stem, and curve are related to
the bold style, but these parameters are different
for lowercase and uppercase. The slant parameter
is related to the italic style. The chosen parame-
ter values for the representation of a bold style are
hair+20, stem+10, and curve+10, while the slant is
0.25 for a representation of the italic style. Figure
8 shows the results of the printing of “FreeSerif with
four different styles, and Figure 9 shows the results
of the printing of the “Computer Modern” font.

Table 3 shows the average time to print out of
both the “FreeSerif” and “Computer Modern” contents.
In this experiment, the results from 10 ms to 30
ms were obtained, and the average time is 16 ms,
while four TrueType fonts were used. Therefore,
extra time was required for the conversion of the
TrueType fonts. In the case of the “Computer Modern”

font of METAFONT, the result is much slower than
that of “FreeSerif”, because it needs additional time
for the conversion of the METAFONT font into the
corresponding outline font. The obtained results are
from 50 ms to 120 ms, and the average time is 90
ms. Even though this time is 10 times slower, 90
ms is still a short time for the printing of a font
file on screen. It is possible to conclude that the
MFCONFIG module could be used with FONTCONFIG

for the support of METAFONT on a Linux PC almost
in real time.

The MFCONFIG module is a convenient system
to provide users with various styled fonts on screen
by applying style parameters directly to the META-

FONT font. The users can use METAFONT easily like
TrueType font as shown in Figure 9.



preliminary draft, July 6, 2016 15:33 preliminary draft, July 6, 2016 15:33

? 6 preliminary draft, July 6, 2016 15:33 TUGboat, Volume 0 (9999), No. 0

Figure 8: Print out text with four styles of“FreeSerif”(normal, bold, italic, bold+italic)

In this paper, the METAFONT font “Computer-

Modern”, which provides alphanumeric values and
symbols, is examined. It is possible to perform tests
with the other METAFONT fonts from CTAN (compre-

hensive TeX archive network) directories that support
languages such as Russian and Thai. But difficulty
was experienced regarding the testing for which co-
mplicated CJK fonts are used.

CJK fonts are very complicated as compared to
the alphabet-based fonts and they are composed of
several thousands of phonemes. A number of stud-
ies have been conducted to partially implement the
CJK fonts, such as Hongzi[8][9] and Tsukurimash-
ou[10], including the use of a structural font gener-
ator using METAFONT for Korean and Chinese[11],
and so on. However there is no commercialized level

of files has not yet been created by METAFONT for
the CJK fonts. The authors expect that the use
of the MFCONFIG module for the generation of the
CJK fonts will take more time. It may, however, be
possible to solve this problem by optimizing meta-
converter in the Conversion Layer. Currently, meta-
converter works with “mftrace” and “autotrace” pr-
ograms, which takes a long time to generate outline
fonts.

5 Conclusion

In this paper, the MFCONFIG module, which enables
the direct use of METAFONT on Linux, is proposed.
It is installed and used with the popular Freetype
rasterizer. MFCONFIG is a plug-in module for the
FONTCONFIG library of the Freetype engine, and



preliminary draft, July 6, 2016 15:33 preliminary draft, July 6, 2016 15:33

TUGboat, Volume 0 (9999), No. 0 preliminary draft, July 6, 2016 15:33 ? 7

Figure 9: Print-out text with“Computer Modern” font in four styles (normal, bold, italic, bold+italic)

makes the latter compatible with the current digital
font types of bitmap and outline. The module sup-
ports a variety of the styled fonts that are generated
from METAFONT along with different parameters.

The existing digital fonts - mainly the outline
fonts of Type1 or TrueType - either do not allow
users to change their styles, or they can be changed
within very limited ranges such as font size. From
the experiments of the present study, however, it has
been demonstrated that a variety of fonts can be di-
rectly generated on screen by applying different style
parameters to a prototype of theMETAFONT font on
a Freetype rasterizer that is installed with MFCON-

FIG; furthermore, the fonts could be seen within an
average time of 90 ms, which is a barely noticeable
duration.

MFCONFIG module targets METAFONT fonts to
be used with Freetype which is a famous raster-
izer. MFCONFIG could be used effectively in case
of alphabet-based fonts, which are relatively sim-
ple and have a limited number of characters. How-
ever, there are only a few METAFONT fonts for vari-
ous languages. It might take a longer time to pro-
cess CJK METAFONT fonts, which have complicated
shapes and have more than several thousands of
phonemes. Additional works will be focus on these
CJK METAFONT for improving performance, and try
to optimize of MFCONFIG module. In addition, this
module will be experimented such like one of font
driver in the Freetype rasterizer.



preliminary draft, July 6, 2016 15:33 preliminary draft, July 6, 2016 15:33

? 8 preliminary draft, July 6, 2016 15:33 TUGboat, Volume 0 (9999), No. 0

Acknowledgement

This research was supported by Basic Science Re-
search Program through the National Research Fou-
ndation of Korea (NRF) funded by the Ministry of
Education(2015R1D1A1A02062211).

References

[1] S. Song. Development of Korea Typography
Industry. Appreciating Korean Language, 2013.

[2] Y. Park. Current status of hangul in 21th cen-
tury. Type and Typography magazine The T,
7th.

[3] Donald E.Knuth. Computers and typesetting
volume c : The Metafontbook. TUGboat,
1986.

[4] K. Packard. Fontconfig. Gnome User’s and
Developers European, 2002.

[5] K. Packard. The xft font library: Architecture
and users guide. XFree86 Technical Confer-
ence,Citeseer, 2001.

[6] H.Kakugawa. Vflib- a general font libray that
supports multiple font formants. EuroTEX
confrerence, March 1998.

[7] H.Kakugawa. A general purpose font module
for multilingual application programs. SP&E,
March 2000.

[8] JR. Laguna. Hong-zi: A chinese metafont.
Communications of the TEX Users Group,
2005.

[9] Candy L. K. Yiu, Jim Binkley. Qin notation
generator. TUGboat, 26th, 2005.

[10] Matthew Skala. Tsukurimashou: A japanese-
language font meta-family. TUGboat, 34th,
2013.

[11] Gyungjae Gwon, Minju Son, Genho
Jeoung, Jaeyong Choi. Structural font
generator using METAFONT for korean and
chinese. 2016 (in preperation).

� Jaeyoung Choi
Soongsil University, Seoul, Korea
choi@ssu.ac.kr

� Sungmin Kim
Soongsil University, Seoul, Korea
sungmin.kim@ssu.ac.kr

� Hojin Lee
Soongsil University, Seoul, Korea
hojini@ssu.ac.kr

� Geunho Jeong
Gensol Soft, Seoul, Korea
ghjeong@gensolsoft.com


	Introduction
	Research for font system
	Implementation of MFCONFIG module
	Examine MFCONFIG module
	Conclusion

