WYSIWYG and WYSIWYM

- KaTeX and WeTeX
- Backslash macros
- Menu and Macro Objects
- Functions and keyboard short-cuts

Content vs Form

- Computable math (content MathML)
- Presentation math (LaTeX)
-Can we do both?

Contradictions in real life

- Left \& Right symmetry
- Spherical symmetry of earth
- Electrical and Nuclear forces - David and Goliath

Classical logic and the blow-up

- A and $-A$ true ==> B is true (blow-up)
- Paraconsistency logic

Finite and Infinity

- Zeno's paradox
- Number of points in $(0,1)$ is infinite, but it is of finite length (=1)
- Countable infinity, rational numbers
- Real numbers are uncountable
- Cantor set
- Transcendental numbers

Uncountability of Real numbers

$$
\begin{aligned}
& a_{i} \in(0,1): \\
& a_{1}=0.010010001000 \ldots \\
& a_{2}=0.01010010101 \ldots \\
& a_{3}=0.100100101011 \ldots
\end{aligned}
$$

Cantor diagonilization: $b=0.101 \ldots$
$\mathrm{b} \notin\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots\right\}$

$C=2^{\mathscr{H}}$

- $x=0.010101001110 \ldots$
- $\mathrm{X}=\{2,4,6,9,10,11, \ldots\}$
- F: x --> X
- F is a bijective mapping from $(0,1)$ to $2^{\mathscr{H}}$
- Hierarchy of infinities: $\mathscr{H}, 2^{\mathscr{H}}, 2^{2^{\wedge}\{\mathscr{H}\}}, \ldots$

Classical Hegelian contradictions

- Contradiction, synthesis and hierarchy
- Finite and Infinite
- Hierarchcy of infinities

Scaling dimension and Cantor set

- Keep removing middle one-third iteratively
- $3^{n}=2$
- Scaling dimension of cantor set
- $n=\log 2 / \log 3$
- $0<n<1$
- Uncountable since it $\{0,2\}$ instances of a tredecimal representaion of $(0,1)$
-0.02002022002... (uncountable)

Complexity and Solvability

- Algoritms <==> Natural numbers
- Decision problems f: N --> $\{0,1\}$ (binary real number)
- Algorithms are countable (Turing number)
- Decision problems uncountable
- Rational numbers are dense in Real numbers (contradiction)

Complexity and Solvability

- Algebraic irrationals (solutions of polynomials with rational co-effecients).
- Yes, there is an infinity between \mathscr{H} and $2^{\mathscr{H}}$
- NP = P? No!
- Second-order phase transitions
- Iterative functions and Neural networks
- Unreasonable effectiveness of Neural networks
- Transcendental numbers and NP-hard problems

