
Using Asymptote likeMETAPOST

Jim Hefferon

TEX Users Group Annual Conference 2023-July

Abstract
Asymptote is a descriptive vector graphics language for technical

drawing that fits very well with TEX, LATEX, and friends. It deserves to be
more widely known.

One appealing thing is that it is in part based on algorithms
from METAFONT and METAPOST but it extends those to three
dimensions. I’ll discuss a couple of workflow things that a beginner to
this system who is coming fromMETAPOST might like, in particular
using a single source file to output many related graphics.

Features
Asymptote is a powerful descriptive vector graphics language. It

provides a natural coordinate-based framework for technical drawing.
LATEX typesets the text and equations.

Ï Mathematically oriented. Inspired byMETAPOST but with a
more standard C++-like programming syntax and IEEE floating
points. Fully generalizesMETAPOST’s path construction
algorithms to three dimensions.

Ï Generates high-quality PostScript, OpenGL, PDF, SVG, WebGL,
V3D, and PRC vector graphics, as well as 3D vector WebGL
graphics for HTML files and 3D vector PRC graphics for PDF files.

Ï Uses the simplex method and deferred drawing to solve overall
size constraint issues between fixed-sized objects, such as labels
and arrowheads, and objects that should scale with figure size.

Ï Under continuing development. Runs on UNIX, MacOS, and
Windows.

You can even run it in your browser without installing it, using the
Asymptote Web Application.

https://asymptote.sourceforge.io/gallery/3Dgraphs/
https://asymptote.sourceforge.io/gallery/3Dwebgl/
https://asymptote.sourceforge.io/gallery/3Dwebgl/
http://asymptote.ualberta.ca/

Features
Asymptote is a powerful descriptive vector graphics language. It

provides a natural coordinate-based framework for technical drawing.
LATEX typesets the text and equations.

Ï Mathematically oriented. Inspired byMETAPOST but with a
more standard C++-like programming syntax and IEEE floating
points. Fully generalizesMETAPOST’s path construction
algorithms to three dimensions.

Ï Generates high-quality PostScript, OpenGL, PDF, SVG, WebGL,
V3D, and PRC vector graphics, as well as 3D vector WebGL
graphics for HTML files and 3D vector PRC graphics for PDF files.

Ï Uses the simplex method and deferred drawing to solve overall
size constraint issues between fixed-sized objects, such as labels
and arrowheads, and objects that should scale with figure size.

Ï Under continuing development. Runs on UNIX, MacOS, and
Windows.

You can even run it in your browser without installing it, using the
Asymptote Web Application.

https://asymptote.sourceforge.io/gallery/3Dgraphs/
https://asymptote.sourceforge.io/gallery/3Dwebgl/
https://asymptote.sourceforge.io/gallery/3Dwebgl/
http://asymptote.ualberta.ca/

Features
Asymptote is a powerful descriptive vector graphics language. It

provides a natural coordinate-based framework for technical drawing.
LATEX typesets the text and equations.

Ï Mathematically oriented. Inspired byMETAPOST but with a
more standard C++-like programming syntax and IEEE floating
points. Fully generalizesMETAPOST’s path construction
algorithms to three dimensions.

Ï Generates high-quality PostScript, OpenGL, PDF, SVG, WebGL,
V3D, and PRC vector graphics, as well as 3D vector WebGL
graphics for HTML files and 3D vector PRC graphics for PDF files.

Ï Uses the simplex method and deferred drawing to solve overall
size constraint issues between fixed-sized objects, such as labels
and arrowheads, and objects that should scale with figure size.

Ï Under continuing development. Runs on UNIX, MacOS, and
Windows.

You can even run it in your browser without installing it, using the
Asymptote Web Application.

https://asymptote.sourceforge.io/gallery/3Dgraphs/
https://asymptote.sourceforge.io/gallery/3Dwebgl/
https://asymptote.sourceforge.io/gallery/3Dwebgl/
http://asymptote.ualberta.ca/

Features
Asymptote is a powerful descriptive vector graphics language. It

provides a natural coordinate-based framework for technical drawing.
LATEX typesets the text and equations.

Ï Mathematically oriented. Inspired byMETAPOST but with a
more standard C++-like programming syntax and IEEE floating
points. Fully generalizesMETAPOST’s path construction
algorithms to three dimensions.

Ï Generates high-quality PostScript, OpenGL, PDF, SVG, WebGL,
V3D, and PRC vector graphics, as well as 3D vector WebGL
graphics for HTML files and 3D vector PRC graphics for PDF files.

Ï Uses the simplex method and deferred drawing to solve overall
size constraint issues between fixed-sized objects, such as labels
and arrowheads, and objects that should scale with figure size.

Ï Under continuing development. Runs on UNIX, MacOS, and
Windows.

You can even run it in your browser without installing it, using the
Asymptote Web Application.

https://asymptote.sourceforge.io/gallery/3Dgraphs/
https://asymptote.sourceforge.io/gallery/3Dwebgl/
https://asymptote.sourceforge.io/gallery/3Dwebgl/
http://asymptote.ualberta.ca/

Asymptote compared with TikZ
TikZ is very widely used and Asymptote has a much smaller user

base.

I have not used TikZ much, and have not used it lately at all. But I
compared the two when I was starting my latest project, some years
ago. Personally I found that Asymptote had some relevant technical
advantages, including native 3D graphics. I also found TikZ harder to
program in. Obviously, YMMV.

Another difference, relevant here, is that the basic paradigm in
TikZ is that your figures are in your document, generated when the
document is generated. In Asymptote the paradigm is that they are
generated outside the document. (Yes, you can generate stand-alone
in TikZ and yes, you can include Asymptote code in a document.)

In the past I had a bad experience while using PS Tricks when the
LATEX world switched to pdfLATEX. It left me with a preference for a
dependence chain that is shorter and broader over one that is taller
and thinner. So I wanted to generate the figures independently from
the documents. Again, YMMV.

Asymptote compared with TikZ
TikZ is very widely used and Asymptote has a much smaller user

base.

I have not used TikZ much, and have not used it lately at all. But I
compared the two when I was starting my latest project, some years
ago. Personally I found that Asymptote had some relevant technical
advantages, including native 3D graphics. I also found TikZ harder to
program in. Obviously, YMMV.

Another difference, relevant here, is that the basic paradigm in
TikZ is that your figures are in your document, generated when the
document is generated. In Asymptote the paradigm is that they are
generated outside the document. (Yes, you can generate stand-alone
in TikZ and yes, you can include Asymptote code in a document.)

In the past I had a bad experience while using PS Tricks when the
LATEX world switched to pdfLATEX. It left me with a preference for a
dependence chain that is shorter and broader over one that is taller
and thinner. So I wanted to generate the figures independently from
the documents. Again, YMMV.

Working inMETAPOST
I wrote a book years ago using METAPOST. For a person who

cannot draw, being able to, for instance, tell the computer to put a
label equidistant between two points is a comfort.

The basic structure is that one file holds many figures. This will
output a graphic into a file numbered 1 and another graphic into a file
numbered 2.

beginfig (1)
-- figure drawing commands in here --

endfig ;

beginfig (2)
-- second figure drawing commands here --

endfig ;

If these are drawings for Calculus then you might, for instance, at the
top of the file declare VECTOR_THICKNESS=0.8pt and use that in lots of the
figures. So putting all the sources in the same file is convenient.

But having worked with METAPOST, I was aware of some warts.
For me the two biggest are lack of any real 3D abilities, and that
programming in the language can be . . . quirky.

So when I saw the new Asymptote system I was eager to try it. It has
been very good.

I will describe two adjustments that may help a person coming from
METAPOST and that took me some time to dope out.

Adjustment One: Multiple figures per file
The basic paradigm in Asymptote is to have one figure per input file.

Here is the skeleton to put multiple figures in a file.

This outputs the file test000.pdf containing the graphic with a
diagonal red line.

string OUTPUT_FN = "test %03d";

// =============
picture pic;
int picnum = 0;
unitsize (pic , 1cm);

draw(pic , (0 ,0) - -(1 ,1) , red);
shipout (format (OUTPUT_FN , picnum), pic , format ="pdf");

Points

Ï The OUTPUT_FN gives all the file names the same structure. So if you
have lots of graphics (my current book has more than 2000) then
it is easier to work with them. Of course, the "test%03d" causes the
picture number to be formatted as a three decimal place integer. I
find that two decimal places in the file name is uncomfortably
tight.

Ï I write picnum = 0 and picnum = 1, etc., rather than
picnum = picnum+1. When you go back into a file with eighty
pictures looking to fix a bug in the fifty third, you want this.

Ï Because of the multiple outputs, lots of commands need a pic

argument. That code shows it in the draw(...) command. If you
leave it out, that line gets drawn somewhere (that is, there is no
error) but not in the graphic file where you are looking for it. The
pic is also in the unitsize(...) command.

Adjustment Two: Style files
This is related to the prior adjustment. As I mentioned, one way that

having multiple outputs from a single input file is helpful is because
uniformity. You can have some parameters such as line thickness or
font or font size, and describe them in just the one file.

But the same applies across multiple files. It is good to have a single
file style.asy that gets input into every Asymptote source file.

For instance, here is part of my style file for the most recent book.

import fontsize ;
defaultpen (fontsize (9.24994 pt));
import texcolors ;
// colors Tech Office
pen darkgrey_color =rgb(" 595241 "); // hex string 89 82 65
pen lightgrey_color =rgb(" E0D4BE "); // tan 224 212 190
pen white_color =rgb(" FFFFFF ");
pen lightblue_color =rgb(" ACCFCC "); // 172, 207, 204
pen red_color =rgb("8A0917"); // 138 ,09 ,23

pen highlightcolor = red_color ;
pen backgroundcolor = lightblue_color ;
pen boldcolor = darkgrey_color ;
pen lightcolor = lightgrey_color ;
pen verylightcolor = white_color ;

I use the more abstract variables such as highlightcolor to make
graphics.

Where to put it? The simple case
You can bring in a file with the import filename command. If that file

is in the list of directories searched by the Asymptote system then you
are good.

For instance, Asymptote has a standard file called settings that you
often want to bring in.

import settings ;
settings . outformat ="pdf";

The searched list is what you’d think it would be: (1) the current
directory; (2) one or more directories given by the environment
variable ASYMPTOTE_DIR; (3) the directory given by ASYMPTOTE_HOME

(or else .asy in the user’s home directory); (4) the Asymptote
system directory; (5) the Asymptote examples directory, such as
/usr/local/share/doc/asymptote/examples.

A more complex case
I provide the files for my book in a git repository

(https://gitlab.com/jim.hefferon/toc). I’ve had bad experience
depending on people knowing how to get working, such as setting a
environment variable. When these folks are unable, they sometimes
write me. That means time and sometimes, aggravation. Is there a way
to import from a file that lowers this bar?

I am more able to depend on people naming the download
directory. Even if they don’t read the instructions they almost always
use either computing/, or toc/, or toc-master/ (if they download the .zip
file rather than clone the repo).

I wrote a routine to look through the path of the current file for
those three strings, and then searching based on that.

A more complex case
I provide the files for my book in a git repository

(https://gitlab.com/jim.hefferon/toc). I’ve had bad experience
depending on people knowing how to get working, such as setting a
environment variable. When these folks are unable, they sometimes
write me. That means time and sometimes, aggravation. Is there a way
to import from a file that lowers this bar?

I am more able to depend on people naming the download
directory. Even if they don’t read the instructions they almost always
use either computing/, or toc/, or toc-master/ (if they download the .zip
file rather than clone the repo).

I wrote a routine to look through the path of the current file for
those three strings, and then searching based on that.

string get_repo_path () {
string current_dir = cd(""); // return current dir
int project_part_of_path_dex_computing =

rfind(current_dir , "/ computing /");
int project_part_of_path_dex_toc =

rfind(current_dir , "/toc/");
int project_part_of_path_dex_toc_master =

rfind(current_dir , "/toc - master /");
// There are eight cases
// computing >=0 toc >=0 toc -master >=0
// case 0: F F F
// case 1: F F T
// case 2: F T F
// case 3: F T T
// case 4: T F F
// case 5: T F T
// case 6: T T F
// case 7: T T T

Ending
Asymptote does a great job drawing technical graphics. Adding

someMETAPOST-like workflow makes it even better.

