
TUGboat, Volume 0 (9999), No. 0 draft: July 10, 2024 15:19 ?1

A Large Scale Format Compliance Checker
for TEX Font Metrics

Didier Verna

Abstract
We present tfm-validate, a TEX Font Metrics for-
mat checker. The library’s core functionality is to
inspect TFM files and report any discovered com-
pliance issue. It can be run on individual files or
complete directory trees. tfm-validate also pro-
vides a convenience function to (in)validate a local
TEX Live installation. When run this way, the li-
brary processes every TFM file in the distribution
and generates a website aggregating all the discov-
ered non-compliance issues. One public instance of
tfm-validate is now automatically triggered on a
daily basis. The corresponding website is available
at texlive.info/tfm-validate/.

1 Introduction
As part of ETAP1, our experimental typesetting algo-
rithms platform [8, 9], we have developed a parser for
TFM (TEX Font Metrics) files, simply called tfm. To
ensure robustness, a parser for an official data format
must be prepared to handle all sorts of compliance
problems, with varying degrees of seriousness rang-
ing from simple warnings to non-recoverable errors.
tfm not only provides a rich (hopefully exhaustive)
ontology of errors, but also a powerful recovery mech-
anism, allowing to proceed for as long as possible
with the parsing, for example by fixing errors on the
fly or discarding problematic input.

A side-effect of tfm’s robustness is that it is
possible to use it as a validation tool rather than for
actually loading font information. Indeed, the tfm
exception handler reifies the problematic situations
into objects (in the “Object-Oriented” sense) which
can be silently collected until the parsing is over or
needs to be terminated prematurely. These objects
can in turn be used to produce a full compliance
report for the analyzed file. We have automated this
process for the whole TEX Live distribution, resulting
in the (in)validation of almost 80000 fonts, and the
generation of a website providing direct access to the
generated compliance reports.

This paper is organized as follows. Section 2
provides an overview of the tfm library and explains
how it is made robust. Section 3 describes the very
peculiar exception handling mechanism in use, and
how it simplifies the design of tfm-validate con-
siderably. Finally, Section 4 analyzes the results of

1 github.com/didierverna/etap

the TFM validation process applied to the whole
TEX Live distribution.

2 The tfm Library
The tfm2 library was designed to bring TEX Font
Metrics information to Common Lisp [1] applications.
It essentially provides an entry point function called
load-font, which takes a file name as argument
and returns a data structure containing an abstract
representation of the contents of the TFM file. A full
description of the library is out of the scope of this
paper. The interested reader will find a complete
user manual in the distribution, as well as online.
The important thing for this discussion is that tfm
aims at being both robust and flexible.

2.1 Robustness
Robustness for a parser means that it should be
prepared to handle all the possible problematic sit-
uations, for example in order to abort loading the
culprit font file and exit gracefully, rather than just
crashing or behaving erratically. During the devel-
opment of tfm, we have identified twenty such situa-
tions, with varying degrees of severity.

Examples of critical situations include truncated
files or invalid section pointers, making it impossible
to know exactly where to find character, ligature,
kerning information, etc. In those situations, there
is nothing clever one can do to make the bogus font
functional.

A less critical, yet problematic situation, would
be the detection of a cycle in a ligature program,
resulting in an infinite loop when attempting the
ligature. In such a case, we can still hope to get
a functional (although incomplete) font if we just
forget about the ligature(s).

Non critical situations might be inconsistencies
in parts of the TFM file which are purely informative
(such as several places in the header) and not actually
used to render the font. TEX itself simply ignores a
number of such situations and proceeds normally.

Finally, note that the severity of a problem
may depend on the context. One interesting such
case is that of the font’s design size. The TFM
format requires it to be greater than 1. At the
same time, TEX allows the design size to be over-
ridden by the user (this is what happens when you
say \font\foo=cmr10 at 12pt for example). An in-
valid design size is normally an error, but it doesn’t
really hurt when overridden by a correct one. Hence,
the tfm library signals an error in the former case,
but only a warning in the latter.

2 github.com/didierverna/tfm

https://texlive.info/tfm-validate/
https://github.com/didierverna/etap
https://github.com/didierverna/tfm


?2 draft: July 10, 2024 15:19 TUGboat, Volume 0 (9999), No. 0

CL-USER> (tfm:load-font "/tmp/cmr10.tfm")
While reading /tmp/cmr10.tfm,
while reading the character encoding scheme string,
padded string "TeX (ex)" is not in BCPL format.
See §10 of the TFtoPL documentation for more information.

[Condition of type NET.DIDIERVERNA.TFM:INVALID-PADDED-STRING]

Restarts:
0: [KEEP-STRING] Keep it anyway.
1: [FIX-STRING] Fix it using /'s and ?'s.
2: [DISCARD-STRING] Discard it.
3: [CANCEL-LOADING] Cancel loading this font.
--more--

Figure 1: Sample interactive recovery session

2.2 Flexibility
Flexibility for a parser means that when possible,
it should provide less drastic ways to recover from
problems than just giving up. tfm currently provides
a dozen recovery options, the availability of which
depends on the situation.

As mentioned previously, it is possible to discard
a ligature or a kerning instruction rather than abort-
ing the whole loading process if something is wrong
(like an invalid character code). Another example is
the requirement that the width, height, depth and
italic corrections tables all start with a first value
of 0. When appropriate, tfm offers to fix a bogus
value (by setting it to 0) and proceed, rather than
just aborting.

Note that the question of whether a font would
really be functional after recovery is very pertinent.
Discarding a single ligature because of an invalid
character code may be safe. Resetting a non-zero
first table entry may be safe as well, but it might
also be the case that the entire table (or the whole
font for all we know) is in fact completely corrupted.
The point here is that it is not the job of the library
to make a decision; only to offer options.

In fact, having options may come in handy for
interactive use (Common Lisp applications can be
run both interactively and as standalone executa-
bles). Figure 1 illustrates this. In this example,
a fake cmr10 font has been corrupted on purpose:
the character encoding string present in the file’s
header has been modified to contain parenthesis,
which is illegal. When loading the font interactively,
the user ends up in the debugger and is presented
with a number of “soft” recovery options (keeping
the string as-is, fixing it, discarding it), in addition
to plain cancellation.

A non interactive application, on the other hand,
would have the ability to automatically select an

option without requiring user intervention. In pro-
duction, the most likely choice is CANCEL-LOADING
(and then fall back to another font). Given the goal
we are trying to achieve here however, we will rather
select the recovery option that allows us to proceed
with the parsing for as long as possible.

Figure 2 summarizes all the possible problems
(rectangles) and the corresponding recovery options
(ellipses) that tfm provides. The details are not
important. The intent of this picture is to convey the
feeling that even for a relatively simple file format,
a complete error / recovery ontology can quickly
become rather intricate.

3 The tfm-validate Library
While tfm was originally a requirement for ETAP,
tfm-validate3 is a typical case of a project that
was born out of curiosity rather than necessity, and
also because it was actually quite easy to do. The
key ingredient in tfm-validate’s design simplicity
is the very peculiar exception handling that Common
Lisp provides, the so-called “condition system” [6, 4],
which will now describe.

3.1 The Common Lisp Condition System
Most programming languages with explicit support
for exception handling use some form of “try/catch”
mechanism, as illustrated in the left part of Figure 3.
A program may establish points at which exceptions
(thrown elsewhere) are caught and handled. In the
example, the program throws an exception while
executing func4. The exception travels up the call
stack until it reaches the handler in func2. If the
exception is actually caught there, execution resumes
at that point. Otherwise, the exception goes one
more step up, to func1.

3 github.com/didierverna/tfm-validate

https://github.com/didierverna/tfm-validate


TUGboat, Volume 0 (9999), No. 0 draft: July 10, 2024 15:19 ?3

file-overflow

cancel-loading

padded-string-overflow

invalid-original-design-size

character-list-cycle

discard-next-character

file-underflow

u16-overflow

fix-word-overflow

set-to-zero

invalid-padded-string keep-string

spurious-char-info

invalid-character-code

discard-extension-recipe

discard-kerning

discard-ligature

invalid-character-range

invalid-design-size set-to-ten

invalid-header-length

invalid-ligature-opcode

invalid-section-lengths

invalid-padded-string-length read-maximum-length

invalid-table-index

abort-lig/kern-program

invalid-table-length

invalid-table-start

ligature-cycle

no-boundary-character

fix-string discard-string

Figure 2: The tfm error ontology

Unfortunately, this mechanism suffers from an
unnecessary limitation in expressiveness: the excep-
tion handler actually does two different things at
the same time (and for no good reason). Indeed, a
control point established by a handler serves not only
to catch an exception, but also to resume execution.
There is in fact no reason to limit ourselves to such a
simple scheme, and the Common Lisp condition sys-
tem adds one more degree of freedom to its exception
handling infrastructure.

3.1.1 Signal / Handle / Restart
The equivalent of “throwing an exception” is called
“signalling a condition” in Lisp, and the concept is
equivalent. There is, however, no such thing as single
catch/resume points in the Lisp condition system.
Instead, a program establishes points where it is
possible to resume execution (called “restarts”), and
point where conditions are caught (called “handlers”).
This is illustrated in the right part of Figure 3. Given
the same scenario as before, func4 signals a condi-
tion. The condition goes up the call stack and finds
a handler in func2. If this handler is interested, it



?4 draft: July 10, 2024 15:19 TUGboat, Volume 0 (9999), No. 0

func1()
try/catch 1

func2()
try/catch 2

func3()

func4()
throw

func1()
handler 1

func2()
handler 2
restart 1

func3()
restart 2

func4()
signal

Figure 3: try/catch vs. handle/restart

now has two options: resume execution right here
(with restart 1), or in func3 with restart 2. Other-
wise, the condition goes one more step up and the
handler in func1 is given the same two choices, since
no additional restart is installed.

3.1.2 First-Class Conditions
A second important aspect of the Common Lisp con-
dition system (not specific to Lisp this time) is that
it is grounded in CLOS [5], the object-oriented layer
of the language. It means that creating an ontology
of errors boils down to designing a hierarchy of condi-
tions classes, and the signalled conditions are reified
as objects, that is, instances of the corresponding
classes. In other words, conditions are “first-class”
citizens in the language [2, 7].

3.2 The Design Simplicity of tfm-validate

Why is all this relevant to the design simplicity of
tfm-validate? As mentioned before (Section 2.2), it
is not the job of tfm to handle errors; only to detect
them and offer as many soft recovery options as
possible, for flexibility. In the technical terms of the
Common Lisp condition system, we now understand
that tfm signals conditions and provides a variety of
restarts, but does not establish any handlers.

Short of handling conditions, a tfm user ulti-
mately ends up in the debugger if something goes
wrong (again, as demonstrated in Figure 1). But
the key point is that since restarts and handlers are
different concepts, it is possible to decide what to
do programmatically rather than interactively, by es-
tablishing handlers outside tfm, or more specifically
around calls to it.

We now understand why tfm-validate was
in fact quite easy to write. The main entry point
is a function called invalidate-font, which calls

tfm’s load-font function. But before doing so,
invalidate-font establishes a (rather large) han-
dler for all the conditions that tfm may signal, and
for every one of them, selects the “softest” restart
available, allowing to proceed with the parsing for
as long as possible. Note again that because han-
dlers and restarts are not required to be located at
the same places in the code, no modifications to the
original tfm library are required to make it work like
a compliance checker rather than for actually using
fonts.

But invalidate-font doesn’t stop there. Ev-
ery time a condition is caught, the function collects
it before restarting (remember that conditions are ac-
tual objects). The return value of invalidate-font
is thus the list (possibly empty) of all the signalled
conditions. In fact, invalidate-font doesn’t do
any printing by itself. After execution, the user gets
the list of signalled conditions, and is then free to
do whatever they wish with it, such as inspecting,
printing in one form or another, or even generating
a website…

4 TEX Live Validation
… which is the point we are getting to. The func-
tion invalidate-font which, again, is essentially a
wrapper around load-font, collecting the signalled
conditions, is 68 lines long. With 10 more lines,
we offer a function checking the compliance of a
whole directory tree rather than of a single font file.
This function is unsurprisingly called invalidate-
directory.

At that point, we were curious about the state
of the TEX Live distribution, since it is a rather large
repository of TFM files, all located under a single
directory tree. As it turns out, running invalidate-
directory on it revealed a quite large number of
non-compliance issues, which was an incentive to put
all that information into a human-readable shape.

4.1 Non-Compliance Reports
The tfm-validate library provides yet another en-
try point called invalidate-texlive. It generates
a website aggregating non-compliance reports (one
HTML page per culprit TFM file) plus a couple of
indexes. With the help of Norbert Preining, the
system is now run on a daily basis and the cor-
responding website is made available at texlive.
info/tfm-validate/.

At the time of this writing, the results of the
validation process are as follows. 79016 fonts are in-
spected. 2983 fonts are skipped because tfm doesn’t
support OFM or JFM yet. 770 fonts are found to be
non-compliant, which may seem quite a lot. On the

https://texlive.info/tfm-validate/
https://texlive.info/tfm-validate/


TUGboat, Volume 0 (9999), No. 0 draft: July 10, 2024 15:19 ?5

other hand, there are only 4 kinds of problems, 3 of
which are considered as warnings, and a single one a
truly unrecoverable error.

4.2 File Overflow
By far, the most common issue that tfm-validate
finds is file overflows, affecting 628 fonts. The TFM
standard mandates that the first two bytes of a TFM
file encode the file’s length. A “file overflow” warning
is signalled if the actual file’s length is greater than
expected. Note that tfm knows about the special
values 0, 9, and 11, denoting extended TFM files
(OFM or JFM), which are not supported yet.

Of course, when the declared file size disagrees
with the actual, there is no way to tell for sure
which (if any) is correct. However, absent any other
problem during parsing, the file containing a tail of
junk is much more likely than the first two bytes
(only) being corrupted, hence a warning.

A quick test on a couple of such files seems
to confirm that hypothesis. We compiled a sample
document with them, and it appears that not only
TEX has no problem loading the fonts, the outputs
look normal as well. On top of that, let us mention
that tftopl adopts the same posture: it signals
the problem but otherwise just discards the junk
(Section 20 of the documentation).

Further investigation on the tails was inconclu-
sive. In particular we couldn’t figure out whether
some tails contain meaningful information rather
than just junk (a possible cause for file overflows
could be padding to storage blocks). As a conse-
quence, the signalled warnings do not include the
tails content.

4.3 String Overflow
The situation is slightly different with the next kind
of problem we encountered, namely, padded string
overflows, currently affecting 74 fonts.

A TFM file may contain two optional strings in
its header. The first one, 40 bytes long, identifies
the character coding scheme. The second one, 20
bytes long, is the font identifier (font family name).
These strings are supposed to be in BCPL format.
In particular, the first byte must contain the actual
length of the string.

tfm signals a “padded string overflow” warning
when a BCPL string is not padded with zeros. Doug
McKenna suggested4 that padding a BCPL string
with zeros may not have always been a requirement,
as it was only added to pltotf in April 1983, for
version 1.3, that is, two years after its initial release
(Section 87 of the documentation). On the other

4 reference lost; could have been in a thread on texhax…

hand, David Fuchs mentioned padding with zeros as
early as in February 1981 [3].

Anyway, the decision as to whether a padded
string overflow should be a warning or an error is even
simpler to make than in the case of a file overflow.
Those strings are purely informative, they have no
impact on the font’s usability, so it does not hurt to
continue loading the font.

Besides, the padding area seems to have been
intentionally abused in the majority of the cases: a
lot of fonts contain "Y&Y Inc" in there, making their
origin quite clear. Because of that (and contrary to
file overflows), the content of the padding area is
included in the warnings.

4.4 Spurious Char Info
The next problem we encountered (also a warning,
affecting 66 files) is a more obscure matter. TFM files
have a so-called “char info table” providing the actual
character metrics of the font. The table contains 4-
bytes entries for the full range of characters from the
minimum character code (bc) to the maximum one
(ec). However, a font may also have “holes” in this
range, that is, undefined characters for some codes
between bc and ec.

Undefined characters must have a width of 0,
materialized by a widths table index of 0 as well.
The spurious char info warning indicates that an
entry for an non-existent character is not completely
zero’ed out. In the problematic char info entries
that we found, the third byte usually has a value
of 1 (indicating an index into a ligature or kerning
program), and sometimes a non-zero fourth byte (the
actual index).

A possible explanation would have been the
existence of a so-called “boundary character” (also
an obscure matter in TFM) which is not required
to exist for real in the font, but upon inspection of
several problematic ones, this appears not to be the
case.

Note that tftopl completely ignores characters
with a width index of 0 (Section 78 of the documenta-
tion), and pltotf zero’es out non-existent characters
(Section 74 of the documentation). All the more rea-
sons to not consider this problem a showstopper.

4.5 Fix Word Overflow
Finally, this one is the only true error we encountered,
and it only affects two fonts: ArevSans-Bold, and
ArevSans-BoldOblique. TFM has a notion of “fix
word” numerical values which (with two exceptions)
must remain within ]-16,+16[. In particular, the
actual font metrics (width, height, depth, and italic
correction) are expressed in fix words.



?6 draft: July 10, 2024 15:19 TUGboat, Volume 0 (9999), No. 0

In the two aforementioned files, exactly 124 such
values are off the charts. Again, for the sake of
flexibility, tfm offers a soft recovery option for this
problem (see Figure 2): setting the culprit value to
0, which would most likely result in an unreadable
document. TEX refuses to load these fonts, which
confirms the severity of the problem; hence an error.

5 Related Work
Manuel Pégourié-Gonnard wrote a Perl script5 for
checking the validity of a variety of files using ex-
ternal programs (typically, tftopl for TFM files).
It is our understanding that this script produces
a somewhat terse output: it prints a list of “bad”
files without collecting more specific information, let
alone presenting it in a human readable form.

According to a comment by Karl Berry, the
script took a long time to run and the maintenance
was tedious, so using it was abandoned in August
2019.

6 Conclusion and perspectives
As mentioned before, this project was born out of
curiosity rather than necessity, and because it was
easy to develop. Whether it is actually useful remains
to be seen. Perhaps having compliance problems
publicly advertised on a website will be a new kind
of incentive for authors to update their files, and
perhaps this project will be more helpful to watch
over new additions rather than blame older content.

One merit of this project is to provide an insight
into the global status of TFM compliance over a
large set of fonts. In particular, we can see that the
surprising number of non-compliant files is mitigated
by the fact that most issues are in fact benign (only
two fonts were found to be truly unusable).

In the future, we plan on adding new font for-
mats to the system. Provided that we can find the
appropriate documentation, OFM and JFM are likely
to be straightforward additions and as a matter of
fact, the tfm library is already prepared for it. We
have also started to work on an OTF parser, designed
along the same lines (that is, built around the Com-
mon Lisp condition system) but this will take slightly
longer to complete.

Finally, the current layout of the website still has
a lot of room for improvements. It currently provides
two indexes, but the general question boils down to
offering different forms of access to cross-referenced
information. Karl Berry has already suggested a cou-
ple of possible ways to do so, which we will definitely
take into account in the future.

5 tug.org/svn/texlive/trunk/Master/tlpkg/bin/
tl-check-files-by-format

Acknowledgements
The author wishes to thank Norbert Preining, Karl
Berry, and Doug McKenna for fruitful exchanges dur-
ing the development of both tfm and tfm-validate.

References
[1] ANSI. American National Standard: Programming

Language — Common Lisp. ANSI X3.226:1994
(R1999), 1994.

[2] R. Burstall. Christopher Strachey — Understanding
programming languages. Higher Order Symbolic
Computation, 13(1–2):51–55, 2000.

[3] D. Fuchs. TEX font metric files. TUGboat,
2(1):12–16, Feb. 1981.

[4] M. Herda. The Common Lisp Condition
System. Apress, 2020. doi.org/10.1007/
978-1-4842-6134-7

[5] S.E. Keene. Object-Oriented Programming in
Common Lisp: a Programmer’s Guide to CLOS.
Addison-Wesley, 1989.

[6] P. Seibel. Practical Common Lisp. Apress,
Berkeley, CA, USA, 2005. Online version at
gigamonkeys.com/book/.

[7] J. Stoy, C. Strachey. OS6 — An experimental
operating system for a small computer. Part 2:
Input/output and filing system. The Computer
Journal, 15(3):195–203, 1972.

[8] D. Verna. ETAP: Experimental typesetting
algorithms platform. In 15th European Lisp
Symposium, pp. 48–52, Porto, Portugal, Mar. 2022.
doi.org/10.5281/zenodo.6334248

[9] D. Verna. Interactive and real-time typesetting
for demonstration and experimentation: ETAP.
In TUGboat, B. Beeton, K. Berry, eds., vol. 44,
pp. 242–248. TEX Users Group, TEX Users
Group, Sept. 2023. doi.org/10.47397/tb/44-2/
tb137verna-realtime

� Didier Verna
EPITA Research Lab
14–16, rue Voltaire
94270 Le Kremlin-Bicêtre
France
didier (at) lrde.epita.fr
https://www.lrde.epita.fr/~didier/
ORCID 0000-0002-6315-052X

https://tug.org/svn/texlive/trunk/Master/tlpkg/bin/tl-check-files-by-format
https://tug.org/svn/texlive/trunk/Master/tlpkg/bin/tl-check-files-by-format
https://doi.org/10.1007/978-1-4842-6134-7
https://doi.org/10.1007/978-1-4842-6134-7
https://gigamonkeys.com/book/
https://doi.org/10.5281/zenodo.6334248
http://www.tug.org/TUGboat/
http://www.tug.org/
http://www.tug.org/
http://www.tug.org/
https://doi.org/10.47397/tb/44-2/tb137verna-realtime
https://doi.org/10.47397/tb/44-2/tb137verna-realtime

	Introduction
	The tfm Library
	Robustness
	Flexibility

	The tfm-validate Library
	The Common Lisp Condition System
	Signal / Handle / Restart
	First-Class Conditions

	The Design Simplicity of tfm-validate

	TeX Live Validation
	Non-Compliance Reports
	File Overflow
	String Overflow
	Spurious Char Info
	Fix Word Overflow

	Related Work
	Conclusion and perspectives

