
Profiling TEX input files
Do you know how TEX spends its time?

Martin Ruckert

Munich University of Applied Sciences
Department of Mathematics and Computer Science

TUG 2024, Prague

Outline

Introduction
What is a Profiler?
Who Needs a Profiler?

How does the TEX Profiler Work?
The “big switch”
Hard and Soft Problems

Examples
Introduction to Profiling
Mostly Text
Optimizing a Macro
LATEX
Loop Analysis

Summary

What is a Profiler?

▶ A profiler maps runtime to program source lines.
Example:

line percent absolut count average file

6450 13.67% 716.40 ms 2541 281.94 us expl3-code.tex

▶ A profiler maps runtime to program functions.
In TEX macros play the role of functions.

▶ The cumulative time spent in a macro and its submacros.
▶ The time spent directly in the macro.

Example (TEX runs for about 5s):

time loop percent count/total macro and children

100.62 ms 1.92% * \@swaptwoargs

1.02 ms 1.02% 42 \@swaptwoargs

85.09 ms 84.56% 10/10 \@input@file@exists@with@hooks

17.42 ms 17.31% 1/4 \loop

What is a Profiler?

▶ A profiler maps runtime to program source lines.
Example:

line percent absolut count average file

6450 13.67% 716.40 ms 2541 281.94 us expl3-code.tex

▶ A profiler maps runtime to program functions.
In TEX macros play the role of functions.

▶ The cumulative time spent in a macro and its submacros.
▶ The time spent directly in the macro.

Example (TEX runs for about 5s):

time loop percent count/total macro and children

100.62 ms 1.92% * \@swaptwoargs

1.02 ms 1.02% 42 \@swaptwoargs

85.09 ms 84.56% 10/10 \@input@file@exists@with@hooks

17.42 ms 17.31% 1/4 \loop

What is a Profiler?

▶ A profiler maps runtime to program source lines.
Example:

line percent absolut count average file

6450 13.67% 716.40 ms 2541 281.94 us expl3-code.tex

▶ A profiler maps runtime to program functions.
In TEX macros play the role of functions.
▶ The cumulative time spent in a macro and its submacros.

▶ The time spent directly in the macro.

Example (TEX runs for about 5s):

time loop percent count/total macro and children

100.62 ms 1.92% * \@swaptwoargs

1.02 ms 1.02% 42 \@swaptwoargs

85.09 ms 84.56% 10/10 \@input@file@exists@with@hooks

17.42 ms 17.31% 1/4 \loop

What is a Profiler?

▶ A profiler maps runtime to program source lines.
Example:

line percent absolut count average file

6450 13.67% 716.40 ms 2541 281.94 us expl3-code.tex

▶ A profiler maps runtime to program functions.
In TEX macros play the role of functions.
▶ The cumulative time spent in a macro and its submacros.
▶ The time spent directly in the macro.

Example (TEX runs for about 5s):

time loop percent count/total macro and children

100.62 ms 1.92% * \@swaptwoargs

1.02 ms 1.02% 42 \@swaptwoargs

85.09 ms 84.56% 10/10 \@input@file@exists@with@hooks

17.42 ms 17.31% 1/4 \loop

Who Needs and Who does not Need a Profiler?

▶ You do not need a profiler if you are a document author.

▶ You might need a profiler

▶ if you are a macro programmer,
▶ and if you care about run time,
▶ and your macros are used very often.

▶ One second CPU time = 28mg CO2 emission.
Driving 200km = 28kg CO2 emission.
(assuming 200Watt peak, 500g CO2/kWh, 2370g/l, 6l/km).

▶ The profiler will tell you where to look for optimizations.

▶ The profiler will tell you where not to look for optimizations.

▶ The profiler will tell you if your optimization had any effect.

▶ Never optimize for speed without a profiler.

Who Needs and Who does not Need a Profiler?

▶ You do not need a profiler if you are a document author.
▶ You might need a profiler

▶ if you are a macro programmer,
▶ and if you care about run time,
▶ and your macros are used very often.

▶ One second CPU time = 28mg CO2 emission.
Driving 200km = 28kg CO2 emission.
(assuming 200Watt peak, 500g CO2/kWh, 2370g/l, 6l/km).

▶ The profiler will tell you where to look for optimizations.

▶ The profiler will tell you where not to look for optimizations.

▶ The profiler will tell you if your optimization had any effect.

▶ Never optimize for speed without a profiler.

Who Needs and Who does not Need a Profiler?

▶ You do not need a profiler if you are a document author.
▶ You might need a profiler

▶ if you are a macro programmer,

▶ and if you care about run time,
▶ and your macros are used very often.

▶ One second CPU time = 28mg CO2 emission.
Driving 200km = 28kg CO2 emission.
(assuming 200Watt peak, 500g CO2/kWh, 2370g/l, 6l/km).

▶ The profiler will tell you where to look for optimizations.

▶ The profiler will tell you where not to look for optimizations.

▶ The profiler will tell you if your optimization had any effect.

▶ Never optimize for speed without a profiler.

Who Needs and Who does not Need a Profiler?

▶ You do not need a profiler if you are a document author.
▶ You might need a profiler

▶ if you are a macro programmer,
▶ and if you care about run time,

▶ and your macros are used very often.

▶ One second CPU time = 28mg CO2 emission.
Driving 200km = 28kg CO2 emission.
(assuming 200Watt peak, 500g CO2/kWh, 2370g/l, 6l/km).

▶ The profiler will tell you where to look for optimizations.

▶ The profiler will tell you where not to look for optimizations.

▶ The profiler will tell you if your optimization had any effect.

▶ Never optimize for speed without a profiler.

Who Needs and Who does not Need a Profiler?

▶ You do not need a profiler if you are a document author.
▶ You might need a profiler

▶ if you are a macro programmer,
▶ and if you care about run time,
▶ and your macros are used very often.

▶ One second CPU time = 28mg CO2 emission.
Driving 200km = 28kg CO2 emission.
(assuming 200Watt peak, 500g CO2/kWh, 2370g/l, 6l/km).

▶ The profiler will tell you where to look for optimizations.

▶ The profiler will tell you where not to look for optimizations.

▶ The profiler will tell you if your optimization had any effect.

▶ Never optimize for speed without a profiler.

Who Needs and Who does not Need a Profiler?

▶ You do not need a profiler if you are a document author.
▶ You might need a profiler

▶ if you are a macro programmer,
▶ and if you care about run time,
▶ and your macros are used very often.

▶ One second CPU time = 28mg CO2 emission.
Driving 200km = 28kg CO2 emission.
(assuming 200Watt peak, 500g CO2/kWh, 2370g/l, 6l/km).

▶ The profiler will tell you where to look for optimizations.

▶ The profiler will tell you where not to look for optimizations.

▶ The profiler will tell you if your optimization had any effect.

▶ Never optimize for speed without a profiler.

Who Needs and Who does not Need a Profiler?

▶ You do not need a profiler if you are a document author.
▶ You might need a profiler

▶ if you are a macro programmer,
▶ and if you care about run time,
▶ and your macros are used very often.

▶ One second CPU time = 28mg CO2 emission.
Driving 200km = 28kg CO2 emission.
(assuming 200Watt peak, 500g CO2/kWh, 2370g/l, 6l/km).

▶ The profiler will tell you where to look for optimizations.

▶ The profiler will tell you where not to look for optimizations.

▶ The profiler will tell you if your optimization had any effect.

▶ Never optimize for speed without a profiler.

Who Needs and Who does not Need a Profiler?

▶ You do not need a profiler if you are a document author.
▶ You might need a profiler

▶ if you are a macro programmer,
▶ and if you care about run time,
▶ and your macros are used very often.

▶ One second CPU time = 28mg CO2 emission.
Driving 200km = 28kg CO2 emission.
(assuming 200Watt peak, 500g CO2/kWh, 2370g/l, 6l/km).

▶ The profiler will tell you where to look for optimizations.

▶ The profiler will tell you where not to look for optimizations.

▶ The profiler will tell you if your optimization had any effect.

▶ Never optimize for speed without a profiler.

Who Needs and Who does not Need a Profiler?

▶ You do not need a profiler if you are a document author.
▶ You might need a profiler

▶ if you are a macro programmer,
▶ and if you care about run time,
▶ and your macros are used very often.

▶ One second CPU time = 28mg CO2 emission.
Driving 200km = 28kg CO2 emission.
(assuming 200Watt peak, 500g CO2/kWh, 2370g/l, 6l/km).

▶ The profiler will tell you where to look for optimizations.

▶ The profiler will tell you where not to look for optimizations.

▶ The profiler will tell you if your optimization had any effect.

▶ Never optimize for speed without a profiler.

Who Needs and Who does not Need a Profiler?

▶ You do not need a profiler if you are a document author.
▶ You might need a profiler

▶ if you are a macro programmer,
▶ and if you care about run time,
▶ and your macros are used very often.

▶ One second CPU time = 28mg CO2 emission.
Driving 200km = 28kg CO2 emission.
(assuming 200Watt peak, 500g CO2/kWh, 2370g/l, 6l/km).

▶ The profiler will tell you where to look for optimizations.

▶ The profiler will tell you where not to look for optimizations.

▶ The profiler will tell you if your optimization had any effect.

▶ Never optimize for speed without a profiler.

How does the TEX Profiler Work?
Collect Data,Write Output File, Analyze Output File

▶ Collect data
main_control(void) {

big_switch:

⟨ look up the time ⟩
get x token();
⟨determine current command, file, line, and macro ⟩
switch (⟨current command ⟩) { ⟨execute current command ⟩ }

goto big_switch;

main_loop:

⟨ loop over characters, kerns, spaces, ligatures, . . . ⟩
goto big_switch;

}

▶ Write data to a file.

How does the TEX Profiler Work?
Collect Data,Write Output File, Analyze Output File

▶ Collect data
main_control(void) {

big_switch:

⟨ look up the time ⟩
get x token();
⟨determine current command, file, line, and macro ⟩
switch (⟨current command ⟩) { ⟨execute current command ⟩ }

goto big_switch;

main_loop:

⟨ loop over characters, kerns, spaces, ligatures, . . . ⟩
goto big_switch;

}

▶ Write data to a file.

Hard and Soft Problems

▶ Soft Problems

▶ Determine and store file and line for each token.
▶ Determine and store file, line, and name for each macro.
▶ Keep track of the macro stack.
▶ Keep track of expand and backup.

▶ Hard Problems:
Get a reliable and consistent time source.

▶ Time sharing and interrupts
▶ Frequency scaling
▶ Performance cores and efficiency cores
▶ Current accuracy: ≈ 100µs
▶ Possible solution: using multiple runs
▶ Possible solution: using synthetic times

Hard and Soft Problems

▶ Soft Problems
▶ Determine and store file and line for each token.

▶ Determine and store file, line, and name for each macro.
▶ Keep track of the macro stack.
▶ Keep track of expand and backup.

▶ Hard Problems:
Get a reliable and consistent time source.

▶ Time sharing and interrupts
▶ Frequency scaling
▶ Performance cores and efficiency cores
▶ Current accuracy: ≈ 100µs
▶ Possible solution: using multiple runs
▶ Possible solution: using synthetic times

Hard and Soft Problems

▶ Soft Problems
▶ Determine and store file and line for each token.
▶ Determine and store file, line, and name for each macro.

▶ Keep track of the macro stack.
▶ Keep track of expand and backup.

▶ Hard Problems:
Get a reliable and consistent time source.

▶ Time sharing and interrupts
▶ Frequency scaling
▶ Performance cores and efficiency cores
▶ Current accuracy: ≈ 100µs
▶ Possible solution: using multiple runs
▶ Possible solution: using synthetic times

Hard and Soft Problems

▶ Soft Problems
▶ Determine and store file and line for each token.
▶ Determine and store file, line, and name for each macro.
▶ Keep track of the macro stack.

▶ Keep track of expand and backup.

▶ Hard Problems:
Get a reliable and consistent time source.

▶ Time sharing and interrupts
▶ Frequency scaling
▶ Performance cores and efficiency cores
▶ Current accuracy: ≈ 100µs
▶ Possible solution: using multiple runs
▶ Possible solution: using synthetic times

Hard and Soft Problems

▶ Soft Problems
▶ Determine and store file and line for each token.
▶ Determine and store file, line, and name for each macro.
▶ Keep track of the macro stack.
▶ Keep track of expand and backup.

▶ Hard Problems:
Get a reliable and consistent time source.

▶ Time sharing and interrupts
▶ Frequency scaling
▶ Performance cores and efficiency cores
▶ Current accuracy: ≈ 100µs
▶ Possible solution: using multiple runs
▶ Possible solution: using synthetic times

Hard and Soft Problems

▶ Soft Problems
▶ Determine and store file and line for each token.
▶ Determine and store file, line, and name for each macro.
▶ Keep track of the macro stack.
▶ Keep track of expand and backup.

▶ Hard Problems:
Get a reliable and consistent time source.

▶ Time sharing and interrupts
▶ Frequency scaling
▶ Performance cores and efficiency cores
▶ Current accuracy: ≈ 100µs
▶ Possible solution: using multiple runs
▶ Possible solution: using synthetic times

Hard and Soft Problems

▶ Soft Problems
▶ Determine and store file and line for each token.
▶ Determine and store file, line, and name for each macro.
▶ Keep track of the macro stack.
▶ Keep track of expand and backup.

▶ Hard Problems:
Get a reliable and consistent time source.
▶ Time sharing and interrupts

▶ Frequency scaling
▶ Performance cores and efficiency cores
▶ Current accuracy: ≈ 100µs
▶ Possible solution: using multiple runs
▶ Possible solution: using synthetic times

Hard and Soft Problems

▶ Soft Problems
▶ Determine and store file and line for each token.
▶ Determine and store file, line, and name for each macro.
▶ Keep track of the macro stack.
▶ Keep track of expand and backup.

▶ Hard Problems:
Get a reliable and consistent time source.
▶ Time sharing and interrupts
▶ Frequency scaling

▶ Performance cores and efficiency cores
▶ Current accuracy: ≈ 100µs
▶ Possible solution: using multiple runs
▶ Possible solution: using synthetic times

Hard and Soft Problems

▶ Soft Problems
▶ Determine and store file and line for each token.
▶ Determine and store file, line, and name for each macro.
▶ Keep track of the macro stack.
▶ Keep track of expand and backup.

▶ Hard Problems:
Get a reliable and consistent time source.
▶ Time sharing and interrupts
▶ Frequency scaling
▶ Performance cores and efficiency cores

▶ Current accuracy: ≈ 100µs
▶ Possible solution: using multiple runs
▶ Possible solution: using synthetic times

Hard and Soft Problems

▶ Soft Problems
▶ Determine and store file and line for each token.
▶ Determine and store file, line, and name for each macro.
▶ Keep track of the macro stack.
▶ Keep track of expand and backup.

▶ Hard Problems:
Get a reliable and consistent time source.
▶ Time sharing and interrupts
▶ Frequency scaling
▶ Performance cores and efficiency cores
▶ Current accuracy: ≈ 100µs

▶ Possible solution: using multiple runs
▶ Possible solution: using synthetic times

Hard and Soft Problems

▶ Soft Problems
▶ Determine and store file and line for each token.
▶ Determine and store file, line, and name for each macro.
▶ Keep track of the macro stack.
▶ Keep track of expand and backup.

▶ Hard Problems:
Get a reliable and consistent time source.
▶ Time sharing and interrupts
▶ Frequency scaling
▶ Performance cores and efficiency cores
▶ Current accuracy: ≈ 100µs
▶ Possible solution: using multiple runs

▶ Possible solution: using synthetic times

Hard and Soft Problems

▶ Soft Problems
▶ Determine and store file and line for each token.
▶ Determine and store file, line, and name for each macro.
▶ Keep track of the macro stack.
▶ Keep track of expand and backup.

▶ Hard Problems:
Get a reliable and consistent time source.
▶ Time sharing and interrupts
▶ Frequency scaling
▶ Performance cores and efficiency cores
▶ Current accuracy: ≈ 100µs
▶ Possible solution: using multiple runs
▶ Possible solution: using synthetic times

Run Times

example pages macro use tex texprof pdftex

sample2e.tex, 3 medium 95ms 75ms 110ms
large, mostly text, plain TEX 1130 low 335ms 400ms 950ms
large, mostly text, LATEX 1119 medium 1330ms 1390ms 1960ms
medium, cweb output 758 high 260ms 280ms 2265ms

Example: sample2e

▶ small size: 3 pages

▶ medium complexity

▶ LATEX

Profiling sample2e
Running texprof

Running texprof with the LATEX format

> latexprof -prof sample2e

This is texprof, Version 3.141592653-1.0 (preloaded format=latexprof)

entering extended mode

(/usr/local/texlive/2023/texmf-dist/tex/latex/base/sample2e.tex

LaTeX2e <2023-11-01> patch level 1

L3 programming layer <2024-02-20>

(/usr/local/texlive/2023/texmf-dist/tex/latex/base/article.cls

Document Class: article 2023/05/17 Standard LaTeX document class

(/usr/local/texlive/2023/texmf-dist/.../size10.clo))

(/usr/local/texlive/2023/texmf-dist/.../l3backend-dvips.def)

(./sample2e.aux) (/usr/local/texlive/2023/.../omscmr.fd)

[1] [2] [3] (./sample2e.aux))

Output written on sample2e.dvi (3 pages, 7548 bytes).

Transcript written on sample2e.log.

Profiling sample2e
Running tprof

▶ Running texprof with the LATEX format

> latexprof -prof sample2e.tex

▶ This creates sample2e.tprof

▶ Running tprof sample2e.tprof shows a summary

> tprof sample2e

Total time measured: 25.50 ms

Total number of samples: 13204

Average time per sample: 1.94 us

Total number of files: 10

Total number of macros: 22746

Maximum stack nesting depth: 126

Profiling sample2e
Running tprof

▶ Running texprof with the LATEX format

> latexprof -prof sample2e.tex

▶ This creates sample2e.tprof

▶ Running tprof sample2e.tprof shows a summary

> tprof sample2e

Total time measured: 25.50 ms

Total number of samples: 13204

Average time per sample: 1.94 us

Total number of files: 10

Total number of macros: 22746

Maximum stack nesting depth: 126

Profiling sample2e
Running tprof -T

Running tprof -T sample2e shows the top ten lines

> tprof -T sample2e

The top ten lines:

file line percent absolut count average file

0 0 94.03% 24.05 ms 330 72.89 us unknown

system linebrk 1.04% 265.37 us 39 6.80 us system

system shipout 0.90% 229.50 us 3 76.50 us system

system buildpg 0.20% 52.27 us 155 337.00 ns system

9 4 0.14% 34.88 us 1 34.88 us sample2e.aux

4 150 0.10% 25.41 us 1 25.41 us article.cls

5 170 0.09% 22.72 us 1 22.72 us size10.clo

7 4 0.09% 22.57 us 1 22.57 us sample2e.aux

4 275 0.07% 18.79 us 1 18.79 us article.cls

3 91 0.06% 14.75 us 1 14.75 us sample2e.tex

Profiling sample2e
Modifying sample2e.tex

▶ Modifying sample2e.tex to load LATEX from the file

▶ Switch on profiling using the \profileon primitive after loading the LATEX format

▶ \let\dump=\relax

\input latex.ltx\relax

\profileon

% This is a sample LaTeX input file.(Version of 12 August 2004.)

%

% A ’%’ character causes TeX to ignore all remaining text on

% the line, and is used for comments like this one.

\documentclass{article} % Specifies the document class

...

Profiling sample2e
Modifying sample2e.tex

▶ Modifying sample2e.tex to load LATEX from the file

▶ Switch on profiling using the \profileon primitive after loading the LATEX format

▶ \let\dump=\relax

\input latex.ltx\relax

\profileon

% This is a sample LaTeX input file.(Version of 12 August 2004.)

%

% A ’%’ character causes TeX to ignore all remaining text on

% the line, and is used for comments like this one.

\documentclass{article} % Specifies the document class

...

Profiling sample2e
Modifying sample2e.tex

▶ Modifying sample2e.tex to load LATEX from the file

▶ Switch on profiling using the \profileon primitive after loading the LATEX format

▶ \let\dump=\relax

\input latex.ltx\relax

\profileon

% This is a sample LaTeX input file.(Version of 12 August 2004.)

%

% A ’%’ character causes TeX to ignore all remaining text on

% the line, and is used for comments like this one.

\documentclass{article} % Specifies the document class

...

Profiling sample2e
Running texprof

Running texprof with the LATEX format

> texprof -ini -etex -ltx sample2e.tex

This is texprof, Version 3.141592653-2.6-1.1.0 (INITEX)

entering extended mode

(./sample2e.tex (/usr/local/texlive/2023/texmf-dist/.../latex.ltx

(/usr/local/texlive/2023/texmf-dist/tex/latex/base/texsys.cfg)

...

(/usr/local/texlive/2023/texmf-dist/.../l3backend-dvips.def)

(./sample2e.aux) (/usr/local/texlive/2023/texmf-dist/.../omscmr.fd)

[1] [2] [3] (./sample2e.aux))

Output written on sample2e.dvi (3 pages, 7548 bytes).

Transcript written on sample2e.log.

Profiling sample2e
Running tprof -T

Running tprof -T sample2e

Total runtime about 5s, time measured 37ms.
The top ten lines:

file line percent absolut count average file

system initrie 39.91% 12.31 ms 1 12.31 ms system

9 1536 7.20% 2.22 ms 150 14.80 us expl3-code.tex

4 9536 2.81% 866.93 us 29 29.89 us latex.ltx

9 1546 2.42% 747.89 us 86 8.70 us expl3-code.tex

4 4591 1.99% 614.37 us 40 15.36 us latex.ltx

9 2101 1.98% 612.14 us 39 15.70 us expl3-code.tex

9 4759 1.81% 557.97 us 12 46.50 us expl3-code.tex

9 1554 1.53% 471.79 us 23 20.51 us expl3-code.tex

4 16430 1.49% 461.15 us 9 51.24 us latex.ltx

9 2105 1.41% 434.11 us 312 1.39 us expl3-code.tex

Example: bible

▶ large size: 1130 pages

▶ use of macros and
macro complexity is low

▶ plain TEX

Profiling bible.tex: The Top Ten Lines
Running tprof -T bible

▶ Running tprof -T bible shows the top ten lines

file line percent absolut count average file

3 29 18.79% 135.14 ms 54649 2.47 us bible.tex

system shipout 14.96% 107.58 ms 1130 95.20 us system

system linebrk 11.89% 85.48 ms 25778 3.31 us system

system buildpg 1.68% 12.11 ms 55190 219.00 ns system

3 56 0.97% 6.98 ms 4750 1.47 us bible.tex

3 15 0.69% 4.95 ms 6183 799.00 ns bible.tex

5 555 0.53% 3.79 ms 8549 443.00 ns plain.tex

5 1204 0.27% 1.97 ms 3390 580.00 ns plain.tex

system initrie 0.26% 1.87 ms 1 1.87 ms system

5 1203 0.24% 1.75 ms 2258 774.00 ns plain.tex

Optimizing bible.tex
Line 29 contains the Verse macro

\def\Verse{\global\advance\vcount by 1${}^{\the\vcount}$}

▶ \global is not necessary. \Verse is used on the top level only.
▶ “by” is an optional keyword
▶ “1” is scanned as a character sequence and converted to an integer.
▶ Math mode requires expensive processing, just to raise a box and use a small font.

\newcount\1 \1=1 \newdimen\3 \3=3.6pt

\def\Verse{%

\advance\vcount\1\leavevmode\raise\3\hbox{\sevenrm\the\vcount}}

▶ Avoid optional syntax.
▶ Use registers for constants.
▶ Use math for mathematics.

Optimizing bible.tex
Line 29 contains the Verse macro

\def\Verse{\global\advance\vcount by 1${}^{\the\vcount}$}

▶ \global is not necessary. \Verse is used on the top level only.

▶ “by” is an optional keyword

▶ “1” is scanned as a character sequence and converted to an integer.

▶ Math mode requires expensive processing, just to raise a box and use a small font.

\newcount\1 \1=1 \newdimen\3 \3=3.6pt

\def\Verse{%

\advance\vcount\1\leavevmode\raise\3\hbox{\sevenrm\the\vcount}}

▶ Avoid optional syntax.

▶ Use registers for constants.

▶ Use math for mathematics.

Optimizing bible.tex
Line 29 contains the Verse macro

\def\Verse{\global\advance\vcount by 1${}^{\the\vcount}$}

▶ \global is not necessary. \Verse is used on the top level only.

▶ “by” is an optional keyword

▶ “1” is scanned as a character sequence and converted to an integer.

▶ Math mode requires expensive processing, just to raise a box and use a small font.

\newcount\1 \1=1 \newdimen\3 \3=3.6pt

\def\Verse{%

\advance\vcount\1\leavevmode\raise\3\hbox{\sevenrm\the\vcount}}

▶ Avoid optional syntax.

▶ Use registers for constants.

▶ Use math for mathematics.

Optimizing bible.tex
Line 29 contains the Verse macro

\def\Verse{\global\advance\vcount by 1${}^{\the\vcount}$}

▶ \global is not necessary. \Verse is used on the top level only.

▶ “by” is an optional keyword

▶ “1” is scanned as a character sequence and converted to an integer.

▶ Math mode requires expensive processing, just to raise a box and use a small font.

\newcount\1 \1=1 \newdimen\3 \3=3.6pt

\def\Verse{%

\advance\vcount\1\leavevmode\raise\3\hbox{\sevenrm\the\vcount}}

▶ Avoid optional syntax.

▶ Use registers for constants.

▶ Use math for mathematics.

Optimizing bible.tex
Line 29 contains the Verse macro

\def\Verse{\global\advance\vcount by 1${}^{\the\vcount}$}

▶ \global is not necessary. \Verse is used on the top level only.

▶ “by” is an optional keyword

▶ “1” is scanned as a character sequence and converted to an integer.

▶ Math mode requires expensive processing, just to raise a box and use a small font.

\newcount\1 \1=1 \newdimen\3 \3=3.6pt

\def\Verse{%

\advance\vcount\1\leavevmode\raise\3\hbox{\sevenrm\the\vcount}}

▶ Avoid optional syntax.

▶ Use registers for constants.

▶ Use math for mathematics.

Optimizing bible.tex
Line 29 contains the Verse macro

\def\Verse{\global\advance\vcount by 1${}^{\the\vcount}$}

▶ \global is not necessary. \Verse is used on the top level only.

▶ “by” is an optional keyword

▶ “1” is scanned as a character sequence and converted to an integer.

▶ Math mode requires expensive processing, just to raise a box and use a small font.

\newcount\1 \1=1 \newdimen\3 \3=3.6pt

\def\Verse{%

\advance\vcount\1\leavevmode\raise\3\hbox{\sevenrm\the\vcount}}

▶ Avoid optional syntax.

▶ Use registers for constants.

▶ Use math for mathematics.

Optimizing bible.tex
Line 29 contains the Verse macro

\def\Verse{\global\advance\vcount by 1${}^{\the\vcount}$}

▶ \global is not necessary. \Verse is used on the top level only.

▶ “by” is an optional keyword

▶ “1” is scanned as a character sequence and converted to an integer.

▶ Math mode requires expensive processing, just to raise a box and use a small font.

\newcount\1 \1=1 \newdimen\3 \3=3.6pt

\def\Verse{%

\advance\vcount\1\leavevmode\raise\3\hbox{\sevenrm\the\vcount}}

▶ Avoid optional syntax.

▶ Use registers for constants.

▶ Use math for mathematics.

Optimizing bible.tex
Line 29 contains the Verse macro

\def\Verse{\global\advance\vcount by 1${}^{\the\vcount}$}

▶ \global is not necessary. \Verse is used on the top level only.

▶ “by” is an optional keyword

▶ “1” is scanned as a character sequence and converted to an integer.

▶ Math mode requires expensive processing, just to raise a box and use a small font.

\newcount\1 \1=1 \newdimen\3 \3=3.6pt

\def\Verse{%

\advance\vcount\1\leavevmode\raise\3\hbox{\sevenrm\the\vcount}}

▶ Avoid optional syntax.

▶ Use registers for constants.

▶ Use math for mathematics.

Optimizing bible.tex
Line 29 contains the Verse macro

\def\Verse{\global\advance\vcount by 1${}^{\the\vcount}$}

▶ \global is not necessary. \Verse is used on the top level only.

▶ “by” is an optional keyword

▶ “1” is scanned as a character sequence and converted to an integer.

▶ Math mode requires expensive processing, just to raise a box and use a small font.

\newcount\1 \1=1 \newdimen\3 \3=3.6pt

\def\Verse{%

\advance\vcount\1\leavevmode\raise\3\hbox{\sevenrm\the\vcount}}

▶ Avoid optional syntax.

▶ Use registers for constants.

▶ Use math for mathematics.

Profiling bible.tex: The Top Ten Lines
Running tprof -T bible

Before optimization

file line percent absolut count average file

3 29 18.79% 135.14 ms 54649 2.47 us bible.tex

system shipout 14.96% 107.58 ms 1130 95.20 us system

system linebrk 11.89% 85.48 ms 25778 3.31 us system

system buildpg 1.68% 12.11 ms 55190 219.00 ns system

3 56 0.97% 6.98 ms 4750 1.47 us bible.tex

Optimization yields about 2% savings (from 18.79% to 2.19% + 14.56%)

system shipout 15.14% 104.49 ms 1130 92.47 us system

3 29 14.56% 100.45 ms 60839 1.65 us bible-opt.tex

system linebrk 12.09% 83.41 ms 25778 3.23 us system

5 666 2.19% 15.13 ms 55847 270.00 ns plain.tex

system buildpg 1.74% 12.02 ms 55190 217.00 ns system

3 56 0.87% 5.97 ms 3552 1.68 us bible-opt.tex

Profiling bible.tex: The Call Graph
Running tprof -G bible

Before optimization

\Verse

195.88 ms 27.24% * \Verse

141.31 ms 72.14% 31011 \Verse

54.56 ms 27.86% 498/1130 \output

After optimization, switching to horizontal mode moved to \leavevmode.

\Verse

173.76 ms 25.18% * \Verse

100.74 ms 57.98% 31011 \Verse

73.02 ms 42.02% 31011/31011 \leavevmode

\leavevmode

73.02 ms 10.58% * \leavevmode

20.04 ms 27.44% 31011 \leavevmode

52.98 ms 72.56% 499/1130 \output

Example: labible

▶ large size: 1119 pages

▶ low complexity

▶ LATEX

Profiling labible: The Top Ten Lines
The LATEX version

Profiled time 1.89s instead of 0.87s.

file line percent absolut count average file

3 29 8.97% 169.65 ms 110697 1.53 us labible.tex

10 3482 7.35% 138.91 ms 10106 13.74 us expl3-code.tex

system shipout 6.30% 119.17 ms 1119 106.49 us system

system linebrk 4.96% 93.74 ms 25711 3.65 us system

5 7305 3.96% 74.82 ms 25711 2.91 us latex.ltx

10 2101 3.34% 63.19 ms 3408 18.54 us expl3-code.tex

5 7312 2.99% 56.58 ms 77131 733.00 ns latex.ltx

5 15014 2.50% 47.33 ms 1119 42.30 us latex.ltx

5 16672 2.38% 45.00 ms 2238 20.11 us latex.ltx

5 7294 1.72% 32.57 ms 25711 1.27 us latex.ltx

Profiling labible: The Call Graph
The LATEX version

The most expensive macros:

time loop percent count/total child

\output

665.34 ms 35.19% * \output

4.07 ms 0.61% 1192 \output

651.31 ms 97.89% 1119/1119 \@opcol

7.09 ms 1.07% 1119/1119 \@makecol

2.51 ms 0.38% 1119/1119 \@startcolumn

371.04 us 0.06% 73/73 \@specialoutput

\Verse

659.22 ms 34.87% * \Verse

174.99 ms 26.54% 31011 \Verse

453.76 ms 68.83% 24336/25708 \everypar [5,7275]

30.47 ms 4.62% 31011/31011 \everymath

7.67 us 0.00% 1/3 \everypar [5,7282]

Profiling labible: The Call Graph
The LATEX version

The most expensive macros (continued):

time loop percent count/total child

\@opcol

651.31 ms 34.45% * \@opcol

610.04 us 0.09% 1119 \@opcol

354.22 ms 54.39% 1119/1119 \@outputpage

294.33 ms 45.19% 1119/1119 \@expl@@@mark@update@singlecol@structures@@

\use_i:nn

641.58 ms 33.94% * \use_i:nn

169.08 ms 26.35% 57501 \use_i:nn

210.67 ms 74.22 ms 32.84% 463/1192 \output

121.55 ms 51.23 ms 18.95% 1119/1119 __mark_update_structure:nn

75.73 ms 453.25 ms 11.79% 25711/25711 \mode_if_inner:F [1,1]

26.87 ms 16.18 ms 4.19% 1119/6761 \seq_map_inline:Nn

Example: texprof

▶ medium size: 758 pages

▶ use of macros and
macro complexity is high

▶ plain TEX

Profiling texprof.tex
texprof pretends to be hitex/pdftex

▶ Runtimes: tex: 270ms
texprof: 280ms
texprof -prof: 410ms
pdftex: 2315ms
pdftex –draftmode: 1610ms
hitex: 1610ms

▶ texprof pretending to be hitex

include: \def\HINTversion{1.2}

\def\HINTdest#1 #2{}

\def\HINTcontents#1#2#3{#3}

\def\HINToutline goto #1 #2 depth #3 #4{}

\def\HINTstartlink goto num #1 #2{#2}

\def\HINTendlink{}

▶ Runtime: texprof –prof: 1600ms

Profiling texprof.tex
texprof pretends to be hitex/pdftex

▶ Runtimes: tex: 270ms
texprof: 280ms
texprof -prof: 410ms
pdftex: 2315ms
pdftex –draftmode: 1610ms
hitex: 1610ms

▶ texprof pretending to be hitex

include: \def\HINTversion{1.2}

\def\HINTdest#1 #2{}

\def\HINTcontents#1#2#3{#3}

\def\HINToutline goto #1 #2 depth #3 #4{}

\def\HINTstartlink goto num #1 #2{#2}

\def\HINTendlink{}

▶ Runtime: texprof –prof: 1600ms

Profiling texprof.tex
texprof pretends to be hitex/pdftex

▶ Runtimes: tex: 270ms
texprof: 280ms
texprof -prof: 410ms
pdftex: 2315ms
pdftex –draftmode: 1610ms
hitex: 1610ms

▶ texprof pretending to be hitex

include: \def\HINTversion{1.2}

\def\HINTdest#1 #2{}

\def\HINTcontents#1#2#3{#3}

\def\HINToutline goto #1 #2 depth #3 #4{}

\def\HINTstartlink goto num #1 #2{#2}

\def\HINTendlink{}

▶ Runtime: texprof –prof: 1600ms

Profiling texprof.tex
texprof pretends to be hitex/pdftex

The top ten lines:

file line percent absolut count average file

7 156 19.27% 361.93 ms 173966 2.08 us cwebacromac.tex

7 157 14.34% 269.25 ms 133574 2.02 us cwebacromac.tex

7 158 9.92% 186.26 ms 134424 1.39 us cwebacromac.tex

7 159 6.48% 121.72 ms 110146 1.10 us cwebacromac.tex

0 0 4.46% 83.83 ms 196011 427.00 ns unknown

7 172 4.15% 77.88 ms 15808 4.93 us cwebacromac.tex

7 173 3.64% 68.34 ms 37002 1.85 us cwebacromac.tex

system shipout 2.82% 52.95 ms 777 68.15 us system

system linebrk 2.70% 50.64 ms 27368 1.85 us system

7 152 2.38% 44.61 ms 26960 1.65 us cwebacromac.tex

Profiling texprof.tex
Adding links to the index

The four lines that account for 50% of the runtime

156 \def\addtokens#1#2{\edef\addtoks{\noexpand#1={\the#1#2}}\addtoks}

157 \def\poptoks#1#2|ENDTOKS|{\let\first=#1\toksD={#1}%

158 \ifcat\noexpand\first0\countB=‘#1\else\countB=0\fi\toksA={#2}}

159 \def\maketoks{\expandafter\poptoks\the\toksA|ENDTOKS|%

. . . Define \next based on the next character
either as \maketoks or \maketoksdone

170 \next

171 }

Profiling texprof.tex: The Call Graph
Recursive loop

The most expensive macros:

time loop percent count/total child

\pdfnote [7,152]

1.25 s 66.76% * \pdfnote [7,152]

24.91 ms 1.99% 8473 \pdfnote [7,152]

1.20 s 95.89% 8473/8473 \maketoks [7,159]

15.05 ms 1.20% 24230/28737 \pdflink [7,145]

11.45 ms 0.91% 4507/4507 \[[5,334]

88.13 us 0.01% 80/80 \ETs [5,177]

59.87 us 0.00% 57/57 \ET [5,176]

328.00 ns 0.00% 1/3 \glob [3,167]

Profiling texprof.tex: The Call Graph
Recursive loop

The most expensive macros (continued):

time loop percent count/total child

\maketoks [7,159]

1.20 s 64.02% * \maketoks [7,159]

4.37 ms 0.36% 8473 \maketoks [7,159]

1.18 s 97.87% 8473/125093 \next [7,159]

13.48 ms 1.12% 8473/133566 \poptoks [7,157]

7.71 ms 0.64% 8473/173958 \addtokens [7,156]

Profiling texprof.tex: The Call Graph
Recursive loop

The most expensive macros (continued):

time loop percent count/total child

\next [7,159]

1.18 s 62.66% * \next [7,159]

51.93 ms 4.41% 125093 \next [7,159]

0.00 ns 1.15 s 97.90% 51084/125093 \next [7,159]

490.86 ms 41.71% 5676/173958 \addtokens [7,156]

441.73 ms 37.54% 59557/133566 \poptoks [7,157]

180.71 ms 15.36% 28737/28737 \makenote [7,172]

11.49 ms 0.98% 8473/8473 \next [7,174]

Summary

Summary

▶ The TEX profiler is a specialized tool for macro writers.

▶ The TEX profiler is open source and available on GitHub:
//github.com/ruckertm/HINT/

▶ It is not perfect, but gives useful information.

▶ It will tell you where there is a chance for optimization.

▶ It will tell you if there is no need or little chance of optimization.

Outlook

▶ If there is substantial demand, there is room for improvements.

Questions and Discussion

▶ Should the profiler go into TEX Live?

▶ Is parsing input files necessarily slow?

▶ Do we need special TEX primitives to speed up common tasks?

▶ Thank you for your attention!

Summary

Summary

▶ The TEX profiler is a specialized tool for macro writers.

▶ The TEX profiler is open source and available on GitHub:
//github.com/ruckertm/HINT/

▶ It is not perfect, but gives useful information.

▶ It will tell you where there is a chance for optimization.

▶ It will tell you if there is no need or little chance of optimization.

Outlook

▶ If there is substantial demand, there is room for improvements.

Questions and Discussion

▶ Should the profiler go into TEX Live?

▶ Is parsing input files necessarily slow?

▶ Do we need special TEX primitives to speed up common tasks?

▶ Thank you for your attention!

Summary

Summary

▶ The TEX profiler is a specialized tool for macro writers.

▶ The TEX profiler is open source and available on GitHub:
//github.com/ruckertm/HINT/

▶ It is not perfect, but gives useful information.

▶ It will tell you where there is a chance for optimization.

▶ It will tell you if there is no need or little chance of optimization.

Outlook

▶ If there is substantial demand, there is room for improvements.

Questions and Discussion

▶ Should the profiler go into TEX Live?

▶ Is parsing input files necessarily slow?

▶ Do we need special TEX primitives to speed up common tasks?

▶ Thank you for your attention!

Summary

Summary

▶ The TEX profiler is a specialized tool for macro writers.

▶ The TEX profiler is open source and available on GitHub:
//github.com/ruckertm/HINT/

▶ It is not perfect, but gives useful information.

▶ It will tell you where there is a chance for optimization.

▶ It will tell you if there is no need or little chance of optimization.

Outlook

▶ If there is substantial demand, there is room for improvements.

Questions and Discussion

▶ Should the profiler go into TEX Live?

▶ Is parsing input files necessarily slow?

▶ Do we need special TEX primitives to speed up common tasks?

▶ Thank you for your attention!

Summary

Summary

▶ The TEX profiler is a specialized tool for macro writers.

▶ The TEX profiler is open source and available on GitHub:
//github.com/ruckertm/HINT/

▶ It is not perfect, but gives useful information.

▶ It will tell you where there is a chance for optimization.

▶ It will tell you if there is no need or little chance of optimization.

Outlook

▶ If there is substantial demand, there is room for improvements.

Questions and Discussion

▶ Should the profiler go into TEX Live?

▶ Is parsing input files necessarily slow?

▶ Do we need special TEX primitives to speed up common tasks?

▶ Thank you for your attention!

Summary

Summary

▶ The TEX profiler is a specialized tool for macro writers.

▶ The TEX profiler is open source and available on GitHub:
//github.com/ruckertm/HINT/

▶ It is not perfect, but gives useful information.

▶ It will tell you where there is a chance for optimization.

▶ It will tell you if there is no need or little chance of optimization.

Outlook

▶ If there is substantial demand, there is room for improvements.

Questions and Discussion

▶ Should the profiler go into TEX Live?

▶ Is parsing input files necessarily slow?

▶ Do we need special TEX primitives to speed up common tasks?

▶ Thank you for your attention!

Summary

Summary

▶ The TEX profiler is a specialized tool for macro writers.

▶ The TEX profiler is open source and available on GitHub:
//github.com/ruckertm/HINT/

▶ It is not perfect, but gives useful information.

▶ It will tell you where there is a chance for optimization.

▶ It will tell you if there is no need or little chance of optimization.

Outlook

▶ If there is substantial demand, there is room for improvements.

Questions and Discussion

▶ Should the profiler go into TEX Live?

▶ Is parsing input files necessarily slow?

▶ Do we need special TEX primitives to speed up common tasks?

▶ Thank you for your attention!

Summary

Summary

▶ The TEX profiler is a specialized tool for macro writers.

▶ The TEX profiler is open source and available on GitHub:
//github.com/ruckertm/HINT/

▶ It is not perfect, but gives useful information.

▶ It will tell you where there is a chance for optimization.

▶ It will tell you if there is no need or little chance of optimization.

Outlook

▶ If there is substantial demand, there is room for improvements.

Questions and Discussion

▶ Should the profiler go into TEX Live?

▶ Is parsing input files necessarily slow?

▶ Do we need special TEX primitives to speed up common tasks?

▶ Thank you for your attention!

Summary

Summary

▶ The TEX profiler is a specialized tool for macro writers.

▶ The TEX profiler is open source and available on GitHub:
//github.com/ruckertm/HINT/

▶ It is not perfect, but gives useful information.

▶ It will tell you where there is a chance for optimization.

▶ It will tell you if there is no need or little chance of optimization.

Outlook

▶ If there is substantial demand, there is room for improvements.

Questions and Discussion

▶ Should the profiler go into TEX Live?

▶ Is parsing input files necessarily slow?

▶ Do we need special TEX primitives to speed up common tasks?

▶ Thank you for your attention!

Summary

Summary

▶ The TEX profiler is a specialized tool for macro writers.

▶ The TEX profiler is open source and available on GitHub:
//github.com/ruckertm/HINT/

▶ It is not perfect, but gives useful information.

▶ It will tell you where there is a chance for optimization.

▶ It will tell you if there is no need or little chance of optimization.

Outlook

▶ If there is substantial demand, there is room for improvements.

Questions and Discussion

▶ Should the profiler go into TEX Live?

▶ Is parsing input files necessarily slow?

▶ Do we need special TEX primitives to speed up common tasks?

▶ Thank you for your attention!

	Introduction
	What is a Profiler?
	Who Needs a Profiler?

	How does the TeX Profiler Work?
	The ``big switch''
	Hard and Soft Problems

	Examples
	Introduction to Profiling
	Mostly Text
	Optimizing a Macro
	LaTeX
	Loop Analysis

	Summary

